
'? ~~ \ j k"'S

,

'- '; 7;'- - -

I-

L -

N·-

- 4 --b

· -- N-

,3 :,~ /~/t

:.1,

i~~~~~~'

NY

/~~~~~~~~

N- \s

/ N I

· -* I.-

· .

. ,

-N o

4 .~ .N

, _

·'

. - /

I -·.)~~~~~~~~.

' i~)

%\

`` r -1, �\i
r68 iCiY'I I

I '' :r' i,' i

-T-H/' / V 'G.

-:- - COMUTER 'N-H A N I - -'Q i E

PR-- -I-EU--TGHNIUS -R -

- - -, : i' PREPA'RED F.OR - -- - .

NATIONAL, AERONAUTICS--AND'SPACE ADMINISTRATION
. '". -w G O DARD -SPACE FL.G HTCENT ER;

, ! ' '- . ~ .-f:'G REEN BELT, MARY, LAND-2077! ,- "

-N) .· -,

I . . . -/ < ,-7 t3

~~~ ·· ` I-~~~~~~~~~~~~~~~..- '~ u
',4 -:;N - -:.' ~~:. F INA L RE PO RT:-~ '-,
I- , .. ... NASA G3RANT NGR 3302 0,2,2125 ., --

·// I / ·,/ ' 1''

I-- ' ' -' ,r .",-'-' -/-,

I-' :,-:d:'- , .;

/ . 4->,, ' JANUARY,,19x72 .4x ,.-)_.

i;; wi~~ ~ ~ ~~~~~~.t#. > .i
/ . .

-; - /''~ 4'' 

- -j I '. . ). , .' I.-:.,aanenUr ' .
4

Jj-
N.' . - .- .-Wer.ner E. .S..... -. ..

-:' / .- /

t.- > . , - N,
'~~~~~~~~~~i- -- ''-h': '- / -'."--- -N'-~: ' ~ " ~~

i~~~~~~~~~~~~~~~~~~', 2-~

. * , ~. ~ " - , ' - /~~~~~~~~~~N N N- -' - ,. - , t ..- ', ' ' . " '

L~~~~~~~~~~~~~~~~~~~
"~~~~~~~~~~~~ - (- v- ',:e 'A Sp a e urg:>',.- -. 

THRut INEPRTV TEHNQUS i-

Repot G.os-tr t al(Syrcus, Ui,)
Jan. 17 8 .p 

Nills A N- , - 4 L~L~I~_L3 II I ,

1, -, ~ -'-.~ ...... ' :. .....- r, - , ...- ..... -,c-~~~~~~~~~~~~~~ --- ."' ,~'..'' N- ~ ~ ~ ~ .NN -~ ' N ' N- L ' j ~ r-

GH INTEEPRET")ZE TECNIQUES T EFinal ,
'Repo ' G.Fosteri et al (Syracuse Univ,)

Jan. 1972 89 p CSL09 ,ca
.... = ' -~ : ~~~ G3/08 40466 ~ 

, ,~ ~ ., -.. ~~~~~~. ~ -. ' .~ :~, ~\.i. 
· . ,'~ _~. ~ ·· ,: ..... L"" b -y~:~.. 

- NATIONAL TECHNICAI -
'

INFORMATION SERVICE ,
i' i. US ,eparmen .of Comm".rC'.:''' ' ) / Springield VA 22151 ,

-4----'

""' '. E ,ELEC. T~R/LCLAn. AIND COMP>UTER ENGINEERING
I~~~~~~~~~~~~~~~~~~~~~N N

'" "1 '- " ' R' N' E T"
N -u'" - ' " SYRACUSE N.Y. '~~~-, ¾ ' / --N . ,- ' · · ¾ : 

N) -- -. N %·

?

r ' N

- '- --

/. 

i

I

� I

i

I ,

I



Computer .Enhancement Through Enterpretive Techniques

Final Report

NASA Grant NGR 33 - 022 - 125

January 1972

Garth H. Foster, Principal Investigator

with

Henk A. E. Spaanenburg

Werner E. Stumpf

Department of Electrical and Computer

Syracuse University

Syracuse, New York 13210

Engineering



T.ABF OF CONTENTS

1.0 INTRODUCTION 1

2.0 THE COMPUTER ENVIRONMENT 3

3.0 SCOPE OF THE PROBLEM 5

4.0 PRIMITIVE CONSTRUCTS 7

4.1 Timing Considerations 11

4.2 Space Requirements 12

4.3 Scalar Functions Extended to Vectors 15

4.4 Scalar Functions Extended to Matrices 17

4.5 Summation 19

5.0 MATRIX INVERSION AND LEAST SQUARES TECHNIQUES 20

5.1 Results 21

5.2 Summary 25

6.0 CLOSED PARTITIONS ON THE STATES OF FINITE STATE
MACHINES 27

6.1 Translating from FORTRAN to APL 29

6.2 Results for Time and Space 41

7.0 THE FAST FOURIER TRANSFORM 42

7.1 Tests and Results for the FFT 48

8.0 A NASA APPLICATION PROGRAM 50

8.1 Program Characteristics and Programming
Problems 51

8.2 Recasting the Original APL Program 52

8.3 Size of Computations and Their Implications 59

9.0 CONCLUSIONS

REFERENCES 65

APPENDIX A

FAST FOURIER TRANSFORM PROGRAMS APL and FORTRAN 67

APPENDIX B

THE FORTRAN VERSION OF BEAM FOR THE NASA
RADIATION PATTERN PROGRAM 74

(i)



FIGURES

6.1 SP Functions 28

6.2 FORTRAN Flowchart 30

6.3 Translation Steps 33

6.4 Subroutine REDUCE 39

6.5 Subroutine SUM 39

6.6 Subroutine NORIZ 40

6.7 Subroutine EQUAL 40

6.8 Subroutine LESS 40

6.9 Moments for REDUCE 43

6.10 Moments for SUM 44

6.11 Moments for NORIZ and EQUAL 45

6.12 Moments for LESS 46

8.1 BEAM (ORIGINAL) 53

8.2 BEAM (MODIFIED) 57

TABLES

4.1 Primitive Constructs Timings 9

4.2 Primitive Constructs Space Requirements 13

4.3 Linear Fit for Vector ADD 16

4.4 Quadratic for Matrix ADD 18

(ii)



COMPUTER ENHANCEMENT THROUGH INTERPRETIVE TECHNIQUES

1.0

INTRODUCTION

This study had as its thesis the improvement in the usage of

the digital computer through the use of the technique of interpre-

tation rather than the compilation of higher ordered languages.

Conseque.ntly, we have concerned ourselves on the one hand with the

efficiency of coding and execution of programs written in higher

ordered languages such as FORTRAN, ALGOL, PL/I and COBOL. Programs

written in these languages are compiled or translated to the ma-

chine language of a specific machine and run in a production

environment, generally that of multiprogramming.

For this study, we have selected FORTRAN as the high level

language in examining programs which are compiled. Widespread use

of the language, particularly for problems of a scientific nature,

and the extensive numbers of implementations of the language over

many years, clearly make FORTRAN a logical choice. While con-

siderable experience has beengained in working with and creating

compiler implementations for higher level languages, success re-

duced interest in the design of languages for which reasonably ef-

ficient execution in an interpretive implementation might be ex-

pected.

It would be useful if a study could have been made dealing

only with general parameters of languages which effect either

compilation or interpretation. It was felt that this was not

possible, and a terse, powerful language was needed as the choice

for the interpretive portion of this study.

For the interpretive language we chose A Programming Language,

or Iverson's notation as it has sometimes been termed. [1,2,3,4]

(1)



The reasons for this choice are: 1) The language is rich in function,

allowing for a compact notation for defining programs and intuitively

offering a high compression ratio between source and a compiled

equivalent. 2) In the APL interpreter the defined functions (pro-

grams) are stored nearly in source code, while the data and constants

are stored in an internal format giving maximum compactness for

both program and data. 3) The APL Terminal System is oriented

towards processing regular arrays of data offering the possibility

of minimizing interpretation overhead. 4) The primitive functions

have been optimized due to hand coding in the assembler language.

The rationale of this study was that there are three areas where

interpretive techniques could enhance the performance of computers.

The first would be in those instances where interpreters could best

compilers in execution speeds. Investigating such a possibility

implies the restriction of the problems to areas in which both

techniques could be applied and of course the use of higher level

languages in coding the problems.

The second way in which utility could be provided by inter-

preters is that of trading machine cycles or execution speed for

space in the run time code stream. The third way in which inter-

pretation techniques would be of value would obtain if the imple-

mentation of an interpreter of a given language provides more ef-

fective use of programmer time in the development of software and

for problems which are to be run once or only. a very few number of

times. In this context it is envisaged that a given language would

have two (and perhaps more) implementations; one would be an inter-

preter on which the program development would be done and the other

would be a compiler in which the production work would be done. If

the problem is to be run few enough times, then the interpreter

only would be used. Here the number referred to as a few depends

upon the 'size and complexity of a program, the execution and compile

time in addition to the interpreted run time; the cost of the pro-

gram development, and the number of compilations used before the

program may be run usefully for the first time. The three points

(2)



of view relative to interpretation given above sketch a range of

capabilities ranging from direct superiority to sometimes usefulness.

In this report a knowledge of APL and FORTRAN is assumed.

2.0

THE COMPUTER ENVIRONMENT

The equipment and machine configuration on which this study

has been condc.dcte.d' 'is .Syrracuse TnTivCr's:i.ty' I '_.TT'] S!t;ae/30.$ >tc,1.

·50 I (512 K bytes) with 2 2314 disk units. The 'operating system

is the Syracuse University Opraiting.'Systenm (SUGS}, i.'a::mddifihbatiod

bf. multipeogta-mmidng.with a fixced 6umbe, of taskL. (MFT II)i:'release

18.6, of o0S/360 using a HASP-like spooling program to provide

spooling and allocation of ports to interactive problem processors.

Currently , SUOS is at the level of Release 7, modification 2.

All computer runs were made between September 16, 1970 and September

15, 1971, and this period covers the time frame when APL was

available as Program Product in its initial form, (XMI), and as a

later, enhanced version, (XM6), both operating under Operating

System /368 (0S/360). .The FORTRAN H system is also available

as a current IBM Program Product. Optimization was set to OPT=2,

or the greatest level, for all FORTRAN runs except for the case

dealing with the partitioning of finite state sequential machines.

This case will be detailed later.

Although the FORTRAN programs were developed, debugged, and

timed in a multiprogramming environment, times reported were mea-

sured in a pure rather than a batch environment. The same

practice was followed for the programs developed inAPL by use of

the APL Terminal System. Thus, in the pure environment APL is up,

when APL is being measured and there are no other APL users on the

system, nor are there any batch users on the system. When FORTRAN

is being measured in this environment APL is not up and no other batch

users are on the system. Ranges of measured times between the two

(3)



modes are comparable, but measuring times in a pure environment

l)Gives repeatibility to within the resolution of the timer and

reduces the necessity of running many tests to obtain statistically

measured times. 2) The problem of interferrence from and with other

programs is minimized reducing, for example, the swap time attributable

to them. 3) Minimizing the confluence in an absolute sense, as

done here, produces an approximation of a batch APL which may then be

compared to normal batch mode processing in a higher ordered language.

All measurements were made using the software monitors provided

by the system. Since these were based on the system timer for the

Model 50 which has a resolution interval of 16.67 milliseconds

(1/60 of a second), some variations in times, even in the pure

environment, will be encountered when the absolute times are small.

These deviations are due, in part, to the software overhead in re-

cording the times in addition to the problem of resolution. In

general, the times measured for the two modes were sufficiently

different and of a size that the error in making measurements in

this manner was either not severe, or was reduced by measuring

larger samples.

Program sizes in both modes of investigation are covered later

but system sizes should be noted, FORTRAN H required partitions of

about 160 K bytes. APL, in this system, requires 178 K bytes, if

two workspaces are kept in core at a time (the.aiiinimum possible)

and 216 K bytes if 3 workspaces are kept in core. The size of the

workspace in both cases is 36 K bytes, a size which has become a

defacto "standard" for APLX360 . Some variati-on-s from IBM estimates

bf cote.requiirfrhents are to be noted for this system because SUOS

allocates physical ports to APL and additional space is required

for the interface. The nominal size requirements [5] are given by

the estimates:

SIZE + 88000+(336xPORTS)+INCOREx8t2O48xrWSSIZE2o048

That is to say the amount of core in bytes required is 88000 f6r the

interpreter and supervisor plus the storage required for terminal

(4)



handling (336 bytes per port) plus the number of workspaces in

core times two words (8 bytes) more than the size of a workspace

rounded up to the nearest 2 K boundary. The 36000 bytes choice

for WSSIZE provide about 32000 bytes to the user.

3.0 SCOPE OF THE PROBLEMS

In any study there is always the question as to whether the

range and the choice of problems are meaningful. We have chosen

five areas for consideration and these are: 1) Primitive constructs,

2) Matrix inversion and operations on systems of linear equations,

3) The partitioning of the states of a finite state sequential

machine, 4) The Fast Fourier Transform (FFT), and 5) A program for

calculating the radiation pattern of an antenna with parabolic

geometry. The last case was a program developed at Goddard by a

visiting scientist and represents a typical application area at the

Goddard Space Flight Center.

Examination of primitive constructs seeks a rough measure of

relative efficiencies between APL, as an interpreter, and FORTRAN

producing a compiled code stream, for simple computational

constructs. The purpose of comparing primitive expressions was

not an attempt to produce an absolute measure of power. Indeed,

the constructs which were chosen are so simple that they are not

likely to be individually significant in real life. They attempt

to give insight into interpretation versus compilation in places

where concise APL expressions, primarily reductions, dealing

with vectors or matrices substitute for one or more DO loop

structures in an equivalent FORTRAN program. The next point of

examination was to consider the trade-off found in the interpreted

environment ( APL- ) between using a primitive construct such as

scalar dyadic functions extended to arrays versus performing the

function in a FORTRAN-like manner, with loops and operating on

(5)



scalars, while using an interpreter.

The second type of problem, matrix inversion and least squares

techniques, gives a fairly complex situation, the programming for

which has become more and more standardized. Matrix inverse

routines are found in most scientific subroutine packages for the

compiled environment and their use in that mode makes the library

an important point of study when considering interpreters (essentially

a library of routines) versus compiled code. Here DOMINO (9 )

was compared with matrix inverse routines found in the Scientific

Subroutine Package as well as with Gauss-Jourdan and Gauss -Siedel

routines written in APL and in FORTRAN.

The third area, finding all partitions of a finite state

sequential machine having the substitution property, is one that

is matrix oriented in formulation but iterative in solution. The

problem can be handled through batch programming techniques but an

interactive approach is most useful. The problem had been

programmed elsewhere in FORTRAN on the Michigan Terminal System

and then programmed by one of the authors (GHF) in (APL ). Both

implementations were turned over to another author of this report

(H.A.E.S.) who at the time knew the algorithm for solution and

was proficient in ALGOL but who had only then begun to learn

FORTRAN and APL . The goal was to obtain measures of efficiency

of coding in time and space and to test the readability of code in

both systems. Additionally, the ability of translating from

FORTRAN to APL is commented upon. For the examples chosen the

space requirements are not pressing in either system. The APL

written versions attempt to make the best use of the array

feature of the language although there may be some limitations

because of the problem.

The Fast Fourier Transform, in Case 4, is another situation

where array capability plays a role and yet where an iterative

process must be applied. Here a version of the FFT published

(6)



originally in ALGOL was translated to FORTRAN (by WES who knew

FORTRAN and APL but not ALGOL) while the APL version was an

improved version of a previously published FFT written in APL.

In this case as with the previous one, some degree of program

writing or translation may be inferred along with the results

quoted for space and time requirements. In this case the space

requirements for data storage in APL hamper the size of the FFT

which may be used in that environment. While we examine the

results obtained both in APL and in FORTRAN under the restriction

that the data must fit in a 36K byte workspace (about 32K bytes

available to the user), no projection is mode to larger data

sizes. Primary interest in the programming task was programming

ease, program size and relative efficiency.

The final task an antenna field problem, as mentioned

previously, was originally programmed in APL as a development

model for the running version of the program which was coded in

FORTRAN. In the present context the original APL function, and

the report which was written to document the work performed by

the NASA researcher, were used to rewrite the program to take

advantage of the array capabilities of APL. The size of the

space needed for data far exceeds the capabilities of storage in

a normal system when attempting to make full use of the array

orientation of APL. An approximation of speeds is mode on the

basis of smaller programs however.

4.0 PRIMITIVE CONSTRUCTS

The initial results in examining some of the primitive

constructs are summarized in Tables 4.1 and 4.2, Ten examples are

considered and a cursory examination shows that a number of cases

deal with plus and times reduction. The reduction operator

applied to vectors is equivalent to a single DO loop in FORTRAN

and the times and plus function have often been quoted as

measures of "computer power" so that add and multiply times for

(7)



popular computer systems are generally well.known. Both functions

have common counterparts in mathematical notation namely the summation

over (Z) and product (X) notations.

All cases are easy to understand and enter into the APL

Terminal System. The same expressions when coded in a FORTRAN

main program did not require an excessive amount of coding time

but in:at least.one case each there was some.choice (Case.8) and

some difficulty (Case.10) in coding.the subscripting in the DO

loops.

Before direct comment is made on the times.and space

requirements, it should.be noted that.in addition to taking added

time to code,the FORTRAN debugging times were longer.due to what

generally amounted to nearly a 24 hour turn around.on program

runs. This was because FORTRAN H, OPT = 2 was being used.and the

required region size of 160 K was not available continuously

throughout the day. Consequently, no .time spans to code and

debug the equivalent FORTRAN programs for these ten expressions

are given.

A longer time to code and debug the equivalent FORTRAN

expression program was found for other tasks,.as well as for

this one, but no comparisons are offered due to the small number

of programmers involved and the variations in programming skill

and experience among those persons involved in this study.

(8)



TABLE 4.1

Primitive Constructs

TIMES in 60's of a second.

APL

60is
of a second

1) +/ I1

2) +/ 2000

3) +/2000pl

4) +/ 7500

1.45 I*4

R*4

R*8

46.7

44.1

165.6

5) x/l1

I*4

R*4

R*8

I*4

R*4

R*8

I*4

R*4

R*8

1.76 I*4

R*4

R*8

6) x/ . 56

7) X/ 2 0 0 0 p 1

* Compile Load and Go

(9)

FORTRAN

CLG * GO

580

604

615

16

17

19

588

623

605

17

24

24

615

574

583

16

12

17

600

614

644

16

48

48

574

590

595

18

18

19

3.9 611

608

591

15

22

17

50.7

I*4

R*4

R*8

I*4

R*4

R*8

596

604

599

23

26

23



APL
Time in
60's of a second

8) +/(iiooo) E I iooo 4086.6

I*4

R*4

R*8

9) D+. D 3 3 p3 9

10) D+..LD - 5.5 - 5p i 12 5

2.7

74

I*4

R*8

I*4

R*4

R*8

1070 4

1052 4

1066 i

1 < J < 1000

700

692

1086

1022

1095

*Compile Load and Go

Table 4.1 Continued

(10)

FORTRAN

CLG *

997

973

991

1 < J <.I

I*4

R*4

R*8

GO

397

390

389

477

478

476

17

16

41

36

39



4.1 Timing Considerations

Case 1 and Case 5 represent the overhead in each case in setting

up the looping mechanisms and terminating the processes in

question. Cases 2 and 3 represent a moderate number of components

(in terms of the size of the workspace). In Case 3 the data is

easier to.generate but packing and unpacking the data takes place

between generation and reduction. Number 4 approaches the upper

size of vector of intergers which may be generated in a 36K

workspace. The sixth expression is limited by the largest

factorial.which may be exactly calculated using long precision

arithmetic. The seventh expression may be compared to number 3

in terms.of changing the function of reduction. Cases 8, 9, 10

represent more.complex problems in data generation, searching, and

inner product. There is no significance to the choice of the

functions used in the inner product except that.minimum was

chosen as a reasonably..simple primitive. requiring, either some

additional coding.in.FORTRAN or a call to a FORTRAN library

routine.

For reductions over vectors with a small number of components,

APL is faster than the execute step of the.compiled FORTRAN. In

these cases the careful hand. coding..required of an. interpreter

pays off. In longer running cases the overhead..of- the compiled

cases is over-shadowed by increased..timesof .interpretive

execution. For.DO loop equivalents.where.the number of iterations

is in the range of 100 to 200, APL is faster than FORTRAN and

within the scope of the workspace sizes and accuraciis avail:able: APL is

in the extreme, from.2..to 10 times slower.than the.GO step of

compiled FORTRAN. In.fact such a comparison is-too.severe.

Since any interactive system.does scheduling.and.swapping and

portions a share to each process we should also have..to count

similar.amounts when.examining the compiled code......Thus..we should

calculate

('11)



( time schedule compiler

+ time to compile

+ time to schedule

Linkage Editor

+ time to execute the

Linkage Editor

+ time to schedule

the GO step

+ Nx GO step time) *. N

where N is positive number giving c measurement of frequency of

use.

Such a formula is more equitable but really only gives a

reasonable picture when the N runs- are sequential, otherwise

the scheduler times for the GO step and perhaps the linkage

editor step should be apportioned differently.

Relative to FORTRAN coding, particularly in those areas where

increased accuracy may be of value but not necessarily needed,

programmers should consider using long (double) precision.

Neither the time nor the space penalty is commensurate with

improved accuracy and not having to worry about conversion

problems when mixing precisions.

4.2 Space Requirements

Table 4..Z-- ies space considerations for the same cases examined

in Table 4.. .1 In 'M -we giive'sizes for the space required by the

codestrint when typed in from the terminal and when the same string

is line 1 of a result returning function. Function definition

overhead for APL\360 is about 40 bytes plus 8 bytes overhead

per line. The word "about" relates to the variability that occurs

in the variety of function types, local variables and when the

entries in the workspace end on a full word boundary.

The APL codestring sizes are roughly one tenth of the size of

(12)



TABLE 4.2

PiRMITIVE CONSTRUCTS

SPACE REQUIREMENTS

PROGRAM
SIZE (BYTES)

24 bytes
(codestring)

68 bytes
(function)

APLFORTRAN

210

262

262

RUN TIME
PACKAGE (DYNAMIC DATA
SIZE FOR APL)

FORTRAN

36 20,592

20,640

20,640

2) +/i2000

24 codestring

68 function

3) +/2000pl

32(codestring)

72 function

4) +/i7500

24(codestring)

68(function)

5) x/1l

24(codestring)

68(function)

210

262

262

36 20,592

20,640

20,640

6) x/t56

24(codestring)

68(function)

(13)

APL

1) +/Il

202

254

262

8032

214

214

222

284

20,584

20,622

20,640

20,592

20,592

20,600

20,584

20,622

20,640

202

254

262

30032

270

254

262

260 20,648

20,632

20,640



TABLE 4.2 (continued)

APL

7) x/2000p1

32(codestring)

72(function)

8) +/( 1000)Ej11000

1 <J < I 32(codestring)

76(function)

1 < J < 1000

9) D+. LD +3 3 pt9

44(codestring

88(function)

10) D+. LD +5 5 5p 1 l25

48(codestring)

92(function)

(14)

FORTRAN

214

214

222

APL

284

FORTRAN

20,592

20,592

20,600

228

240

240

8192

238

250

.250

396

386

458

168

20,608

20,616

20,616

20,616

20,632

20,632

20,776

20,768

20,840

21,456

21,456

21,986

1078

1076

1606

1572



the FORTRAN programs. The overhead penalty for data for APL is

somewhat higher due to the dynamic nature of the storage of values.

The nature of the interpreter and the data representation also

account for the expansion of storage requirements during execution

for APL\360. The size of the FORTRAN run time package is quite

large compared to the program (almost two orders of magnitude).

While larger FORTRAN programs are not likely to show as badly, it

should be kept in mind that if the average size of a FORTRAN run

time package were 20K bytes then 4 FORTRAN programs would carry

along requirements of space which in combination would be almost

as large as the APL\360 interpreter.

4.3 Scalar Functions Extended to Vectors

If any of the advantages of APL (the interpreter environment)

are to be gained then the strong points of the language based in

the interpreter must be exploited. It was decided to examine the

use of the extension of the primitive dyadic scalar + to vectors

and matrices rather than the use of FORTRAN style looping in

APL. The object was to gain insight into the cost of the looping

and its associated interpretation costs in APL... To accomplish

this times for the primitive + were measured against the function

ADD for the vector lengths of 1, 2, 4, 10, 16, 20, 24, 28, 32,

64, 128, 256, 512 and 1024 elements.

VZ - A ADD B; I

[1] Z + (pA) p0

[2] I + 1

[31 L1: Z[I] - A[I] + B[I]

[4] +((I-I+I) ' pA) IL1

V

Clearly ADD simulates a FORTRAN-like way of performing vector

addition.

Using the APL function, Domino ( B ), least square fits of

(15)



degree 1 to 5 were made for both the primitive + and the function

ADD.

Since the number of loops in ADD or embedded in + is linear,

we should expect an adequate fit using the form

Yi = a + al X xi

The results of the least squares fit for polynomials of degrees

one and two are summarized in Table 4.3.

DEGREE OF POLYNOMIAL

1 2

+ ADD + ADD

a 1.479 1.906 1.628 1.888

a
1

0.0106 2.184 7.321E 2.185

a
2

- _ 3.490E
-
6 .111E

-

5

sum
of 1.302 16.53 0.3583 16.53

squares

TABLE 4.3

The size of the coefficient of the quadratic term relative to

the first order coefficient indicates that we will have about 3%

difference in what would have been predicted using the linear

model when 1000 element arguments are used. The reduction in the

sum of squares between the model and actual measurements for +

when going from a linear to a quadratic fit is due to the short

time needed for execution of the + functions;greater inaccuracies

in measurement exist when adding small vectors-with numbers of

elements and a higher order polynomial fits the dispersed data

better.

We conclude that the linear model will be good enough to give

reasonable insight into a comparison of the primitive extended to

vectors and a FORTRAN-like program simulating the extension.

Examination of the constant coefficients (1.479 and 1.906)

would tend to indicate that about 29% more time is required for

(16)



initialization in the looping case; however, it should be noted

that the ADD coding appeared as a function call and thus required

interpretation and elaboration above and beyond that which would

be needed if the same code appeared in line. The linear terms

(0.0106 and 2.184) clearly indicate that simulating the extension

is 206 times less efficient than using the.primitive. This extra

time arises from two sources, the first of which is interpreting

the line (or lines) n - 1 times more than would be required if

looping did not have to be used. In addition to the lines being

longer to do the same amount of work, generally two lines are

required; one to do the branching and another in which the

function is performed with suitable indexing of the.vector

arguments. It is the use of APL's very general..indexing in this

oversimplified fashion which adds additional inefficiency not

found.in the. + primitive's accessing the data.

4.4 Scalar Functions Extended to Matrices

When attempting to model the application of.a dyadic scalar

primitive to rank 2 arrays there are two ways to proceed. One

way is to ravel the arguments, use a.function having the form of

ADD from Section 4.3 to perform the scalar dyadic function and

then reshape the result. Although this is in effect what APL

does, we chose to simulate the primitive applied to a matrix in a

FORTRAN-like manner, by nested loops. The reason for.adopting

this approach was to try to get additional insight into the

overhead of repetitive looping in APL. For square matrices we

would expect strong correlation to.between the.quadratic.term of

an approximating polynomial in this case and the linear.component

.in the preceeding case. To carry out this investigation matrices

of the form

(17)



V MN + GEN N

[1] MN + (N,N)pl NxN

V

were generated for N = 1, 2, 4, 10, 16, 20, 24, 28, 32 and 36.

Each of these was then added to itself by using the function MADD

VZ - A MADD B;I;J

[1] Z + (pA)pO

[2] I + 1

[3] Li: J - 1

[4] L2: Z[I;J] + A[I;J] + B[I;J]

[5] -+ ((J+J+ ) ' 1+pA)/' 2

[6] + ((I+I+1) -< i+PA)/L1

V

Once again DOMINO was used to perform least squares fits to the

data for both + and MADD for polynomials of the first,

second and third degree. The coefficients as well as the sum of

squares between the data and the approximating polynomials may be

summarized by the following table.

DEGREE OF POLYNOMIAL

a 0

a1

a 2

a 3

sum
of

squares

1 _ _ _2 3

+ MADD + MADD + MADD

3.243 331.9 1.802 2.487 1.985 3.950

0.623 92.07 -0.1550 1.300 0.2187 0.4697

- 0.0167 2.779 0.0201 2.855

.. - - 4.748E 5 1.600E 3

156.0 4162E5 7.946 11.36 7.787 8.537

TABLE 4.4

The linear fit is rejected immediately not only because of the poor

fit denoted by the large sum of squares but also because the

negative intercept is misleading in terms of predictive use of the

(l1)

I



model. It does indicate the strong dominance of data points

away from the origin requiring a polynomial. of higher degree to

model the behavior of the functions.

A comparison of the second and third degree fits indicates

that the cubic coefficient in the polynomial for + accounts for

little in reducing the sum of squares in the least squares

approximation. Over the range of interest for n (1 < n < 36) the

contribution of the cubic term only approaches the size of the

constant term. The third order term plays a larger role in

creating a model for MADD.

The similarities between a
0

in + with vector and matrix

arguments and for ADD and MADD and the similarities between a
1

for ADD and + applied to vectors and a2 for MADD and +

applied to matrices, lead us to consider the quadratic approximation

for + and MADD for matrix addition.

The negative value of coefficient al, for + applied to

matrices is worthy of comment. It implies that the slope of the

approximating polynomial is negative for n < 4 and positive for

n > 4. This probably reflects the inaccuracies of the

measurement process for small n.

If we consider the two models, 0.0167x - 0.155x + 1.802 for

+ and 2.779x
2
+ 1.3x + 2.487 for MADD we would expect

behavior for large x to be as the ratio of 2.779 to 0.0167 or

about 167 to 1. Yet over the range of fit with n = 32 so that

n = 1024 the two polynomials evaluate to numbers having a ratio

of about 208 which agrees closely with the ratios of slopes from

the linear model derived in the previous section.

4.5 Summation

Within the scope of simple constructs such as reduction, inner

products and extensions of scalar function to vectors and arrays

of higher rank, there is evidence that APL is competitive with

FORTRAN when we restrict the size of the arguments to being small

(.19)



or at least reasonable with regard to the size of the defacto

standard workspace of 36K bytes. To achieve advantage where it

exists,coding in APL must exploit the array capabilities of the

language. In general FORTRAN-like constructs must be reformulated

to produce good code for the interpretive environment under study.

Replacing looping with array structure, in general, and in the

particular cases examined here,may be faster than FORTRAN like

coding in APL by a couple of orders of magnitude.

For good APL code and in simple constructs such as given

here APL can beat the execute times of FORTRAN and is, in

extreme cases, no worse than an order of magnitude slower. In

fact speeding APL up by a factor of 2 or 3 by techniques which

would not show an equivalent gain in compiled code would make

interpretation in this context quite comparable with FORTRAN

execute times.

APL code is 8 to 10 times more compact although there is a

much higher penalty for data because of the dynamic size of data.

The size of the runtime package of FORTRAN greatly reduces the

severity of such problems when comparing the two.

The times charged to APL do carry a proportion of the

overhead of supervisory tasks as well as language function such as

interpretation and elaboration. These same figures are usually

not considered in the same light when judging the batch

environment but they must be paid for somewhere. On the other

hand, the space taken up by a FORTRAN program provides for the

data, but often some space is overlayed and other is in COMMON.

5.0 MATRIX INVERSION AND LEAST SQUARES TECHNIQUES

The second area of consideration is that of matrix inverse

techniques. This was prompted because routines for matrix

inversion have been of demand and standardized to the extent

that a variety of algorithms for that task are usually available

(20)



in scientific subroutine libraries for the.FORTRAN batch environment.

Also, the availability of APL 's DOMINO ( I ) function in IBM's
Program Product APL\360 -OS (5734-XM6) and APL\360

-DOS (5736-XM6) invite comparison both within APL and between

APL and FORTRAN. Documentation for DOMINO may be found in

papers by M.A. Jenkins [6,7], in which he describes DOMINO. He

includes a number of meaningful examples in the IBM Technical

Report [6] which were examined and measured on Syracuse

University's APL\360 system under SUOS. In addition 3 x 3

through 12 x 12 Hilbert matrices and a 6 x 6 All matrix from

p 139 of a text by J.R. Westlake [8] have been timed and compared

to their known inverses.

In addition to tiese comparisons Domino was compared to its

simulation in APL as given in [6]. DMD simulates the dyadic

form of ~ and MMD the monadic case. To give comparison to

DMD and MMD both the Gauss-Jordan, GJINV , and the Gauss-

Seidel GSINV algorithms were programmed in APL. Examples of
'

these algorithms In APL may be found in Hellerman [9] on pages

60-62 and 63-64 rlespectively.

The comparabLe FORTRAN tests were made with MINV of IBM's

Scientific Subroitine Library and which calculates inverses for

REAL*4 data. Te3ts using the double precision version DMINV

were initially, iconclusive and after consideration of results

similar to that previously seen when comparing REAL*4 and REAL*8

execution furt er consideration was abandoned. In MINV the

Gauss-Jordan method is used with the determinant also being

caluculated.

5.1 Results

Denote the cases by the following APL statements or their

equivalent s atements with the time in 60's of a second.

lttmet

(21)



1) A - 3 3 p 4 8 5 3 9 2 7 10 2

B + 105 97 114

a) BOA

b) (9A)+. xB

c) (T+.XB) R (T+OA)+.xA

d) B DMD A

e) (MMD A) +.xB

f) (GJINV A)+-XB

g) (T+.xB) DMD(T*+A)+.xA

h) (MINV A)+.xB

(in FORTRAN)

2) B + 3 2 p105 72 97 56 114 87

A as before

a) BMA

b) (] A) +.xB

c) (T+.xB) B (T+A)+.xA

d) B DMD A

e) (MMD A)+.xB

f) (not used)

g) (T+.xB) DMD (T+<A)+.xA

h) (MINV A)+.xB

(in FORTRAN)

3) H3 + --1+ (i3)o .+ 13

a) [E H3

b) MMD H3

c) GJINV H3

d) MINV H3

(in FORTRAN)

4) Hi2 + .-it(112) o.+l12

a) E H12

b) MMD H12

c) GJINV H12

d) MINV H12

(in FORTRAN)

(22)

2

4.2

4.8

104.6

104.4

54.2

104.8

17 (751 CLG)

3

3.6

4.2

102.4

104.8

99.8

18

2.6

107.6

52.2

17

38.4

525.4

679.8

50

(789 CLG)

(686 CLG)

(769 CLG)



5) M - 6 6 p 1 0 0 0 01'

1 1 io0 01'

-1 i 1 O 1'

1 -1 1 1 0-I

-1 1 -1 1 1 1I

1 -1 11 1 

a) EM 7.2

b) MMD M 199.0

c) GINV M 173.2

d) MINV M 26 (707 CLG)

(in FORTRAN)

In each of the cases where we refer to the FORTRAN figures

CLG stands for Compile Load and Go.

If we compare (a), (APL times for the monadic use of ~ ),

and (d) (FORTRAN MINV times) for cases 3, 5, 4 as sample points for

the inversion of matrices of order 3, 6 and 12 we see that APL

out performs compiled FORTRAN. The trend of the data appears that

at some point the APL times will exceed those of FORTRAN. If

we fit quadratic equations to both sets of times in order to

get a rough idea of the form of the function, we find that APL

times would be approximated by

0.4074 n2 - 2.133 n + 5.333

while the FORTRAN times follow the form of

0.1111 n2 + 2n + 10.

The APL predicted (and measured) times agree closely with the

times reported by Jenkins [7] (p. 384), and based on solution of

the difference of the two approximations the cross over point is

about n = 15.

Jenkins also notes in [7] that for matrices of order greater

than 15 DOMINO runs faster in APL than the matrix multiplication

of two matrices of the same order.

It should be noted that these estimations are based on

quadratic fits while in general we expect matrix inversion routines

to have run times which are proportional to cubic functions of

(23)

0



the rank of the matrix. While the number of multiplications

(and divisions) and additions grows cubically, the other forms of

overhead such as the number of times which the looping routines

are called grows quadratically. These approximations then can

only give an indication of how the relative overheads behave.

The size of the FORTRAN program sizes and load module sizes

for each of the pertinent cases are

CASE PROGRAM LOAD MODULE
SIZE (bytes) SIZE (bytes)

1 396 22,864

2 454 22,920

3 274 22,744

4 1044 23,512

5 412 22,880

The APL functions GJINV and GSINV require 488 and 364

bytes respectively. The APL function DMD, MMD, and LS which

are used to simulate M require a total of 1804 bytes.

The FORTRAN load module sizes given above include 22,468

bytes for 10 FORTRAN routines including MINV from the Scientific

Subroutine Package.

We have not made mention of the APL function INV (or JINV )

found in 1 ADVANCEDEX on the APL\360 system. Jenkins

figures[6,7] compare that routine to R and we do not repeat the

results here, except to say that the results are roughly

comparable to those obtained for GJINV and R.

In terms of the added function of least squares techniques

available in R and DMD, MMD, and LS we note that for

AA + 5 2 p 1 1 i 2 1 3 1 4 i 5

BB + 1.999 3.002 4.001 4.999 5.998

we have the following times (in 60's of a second)

(24)



BB1AA 2

BB DMD AA 78.4

(BAA) +oxBB 3.8

(MMD AA) +.xBB 83.4

(T+.XBB) ~ (T+OAA) +,xAA 3.6

( T+ .xBB) DMD ( T-OAA) + .xAA 76.2

No least squares techniques coding for FORTRAN was produced. When

considering the use of iterative techniques like the Gauss-Seidel

method, we consider

W + 4 4p 11 2 3 4 2 13 4 5 3

4 15 6 4 5 6 17

R i 1 i

Times in 60's

R9W 3.4

R DMD W 149.4

R GSINV W 389.4

(14 iterations)

(SW) +.xR 6.2

(MMD W) +.xR 155.4

(GJINV W) +.xR 102

(T+.xR) M (T+'-W) +.xW 6.8

(T+.R) DMD (7T+W) +.xW 156

(T+.xR) GSINV ( Te-W) +.xW 1041.4

(38 iterations)

No FORTRAN coding corresponding to the Gauss-Seidel method

was produced; comparison times using GJINV are shown, since

is the technique comparable to MINV.

5.2 Summary

From the above we may conclude, as Jenkins did,.that DOMINO is

much faster (and more accurate) than the matrix inverse routines

written in APL. When solving linear equations (or systems of

(25)

of a second

(GSIN V)

that



equations) having the form

AX = Y

in traditional matrix notation, you should perform X + YEA

rather than

A-1Y

as expressed in the form

X + (HA) + 0 xy.

That is, never use the monadic form when the dyadic use is

intended.

For matrices of size less than 15 x 15, even using the monadic

form of DOMINO the, time to invert a matrix is less than the

time to execute a comparable program written in FORTRAN H, OPT = 2.

When the times to compile and load and-go are.considered,

DOMINO becomes even more competitive. We do not attempt to say

how much more competitive because that would depend on how many

matrices are inverted when a routine is compiled, scheduled, and

executed. That depends on the application or more correctly a

broad sample of applications.

In terms of size the codestring Z - BOA takes up about 24

bytes and a dyadic function with the above as the definition

would take up 64 bytes. This compares to some 400 or so bytes

for the FORTRAN program. The load module size should of course

be compared to the some 88,000 bytes required.by the APL

interpreter a small portion of which is of course the code for

DOMINO.

(26)



6.0 CLOSED PARTITIONS ON THE STATES OF FINITE STATE MACHINES

A partition, a, on the set of states of a finite state

machine,

M = (S,I,O,6,A,so), is a collection of disjoint subsets

(blocks) of the set of states,S, whose set union is S. A

partition is said to be closed, or have the Substitution

Property (SP), if and only if for each input a e I, the set of

inputs, maps blocks of v into blocks of . That is,

E (s) - B (t) - B ( 6(s,a)) - B-(6(t,a))

so that when states s and t, are in the same block of X then their

images under the next-state function, 6, will also be in the same

block independent of the input, a. The FORTRAN program which was

the initial focal point of this part of the study was written by

Thomas F. Piatkowski [10] for interactive use on the Michigan

Terminal System at the University of Michigan. This program

calculates all partitions,having the substitution property,of a

finite state machine which is input interactively as part of the

program execution. In addition to the closed partitions enough

information is generated in the output to construct the lattice

of closed partitions for that machine. Each partition is given

together with an identifying number, a measure of its "height" in

the lattice and the type of the point according to whether that

closed partition is a lattice atom, a basic generator, a two-state

generator, or none of these types. A collection APL functions

to perform these same tasks have beeu programmed by one of the

authors (GHF) and reported upon elsewhere [11]. The APL

functions are given here as Figure 6.1 and are as they appeared

in [11]. Modularity of the functions are as shown because some

functions were used with yet other applications dealing with

finite state sequential machines. Since that publication the

coding has been improved, but the times and sizes reported here

(27)



VINITIALIZE[J]V

I .ITIALIZE;K;T;SU
Fl] 'PIUMBER OP STATES.R'
r21 .S-,
F3 'IllNBER OF ITPUTS, P'
Filj p*11
rs1 SITAT7E'iVo
Frl Y-1
r7] 'IETER ROPW OF THE ',((5+

-11xSU) I' TATEOUTPUT').' T ABLE AS
:RErUESTED'

r10F i 8, o[l'SIZE .ERROR Rr-ElTER POI1
F11i] S?-ATrE-!TAT,T
[121 Hlx'aKE.R+l
[13] f16 S[/*
[14] 'OUITPlUT TABLE RrOUIRED? (YS. 110O)'
r15] *17 x' I;'
[rlr] ·66x OsSI/.~Sr/
F17] *20xt(PSTATIE)NxP
[18] OUT-(I,p)pO
r19l -21
F 201 OUT-(il,P)o(x(P)+STATE
[211 STATE.-(i ,P) 0 STATE
[221 PRINT

V

VSP[U]V

V SP;IJ;I;J;TM;CC;C2;N2;E;B;T;L;Q;SQ
[1] COLS
[2] G2+(N2,N)((N2-2!11) .)DO
[3] K-i
[4] LI:C2[K;IJ[E; ]]1
[5] .LlxlN2XKEK+ l
[61 X-i
[71 L2:B*1
[8] L3:TPSTATE[( G2[E;]=B)/ IN;]
[9] L-1
[10] L4:L5xilv/O /0Q-C2[;T[;L]]
tl] *L6,C2[K;T[;L1]~l+t/2[ K;t ]
[12] L5:-L6x(( (pQ)=pSQ)^^/SQlBSQ*(Q*O)/Q
[13] L7:C2[K;((Q=O)/ Tf[;L]),(C2t[; ]cSQ)/I.N]BL/BSQ
[143] 02[C;]-2[;] 2[;]-Q\((Q+G2t[K;]0)/C2[;])-. ,(SQ-B)/SQ
[153] L2
[16] L6:-.L4'xpkL-L+1
[17] Lr3xt(r/G2[K;])2kBB+1
[18]3 L2-xN22K-X+l
[193 K-1

[201 Ls:G2[;K;] NORMALIZE C2[K;]
[211 *LSBxD2KEX+tl
[22] C2.C2[Vr/C2;]
[231 B-GC2A.=C2
[24] COMPRESS
[25] PPFI-
(26] LEVELfL-O
[27] L10:Q-(SQO-ViB()/,ltpB0 ORDER G2
[283 PP-PP..SOfC2
[29] LEVEL-LEVEL.(+/SQ)pL-+l1
[30] *L14qxl=pQ
[31] IV1
[32] Lll:JtIt l
[331 L12:+L13XlV/G2^.=T-C2[Q[I]%] SUM G2[Q[J];]1
[3241 c2(1 0 +pC2)p(.C2),T
[35] L13:--L12x(pQ)ŽJ-J-1
[36] *Lllx (OQ)>II+l
[371 LI4:C2-(l( lPoG2)oQ)CG2
[383 *L0IOx<x/pG2
[391 Pp-(((pPP)BN).N)pPP
[40] K-O
[41] L15:K;' ';LEVEL[I+kl;' ';PET I+K
[42] -. L15x(ltpPP)>K-X +l

VCOLS[J]V

V COLS;TM;CC
[1] IJ+~(2,0o.5sIJ)p IJI(I*TM/TC ,CC),J(TM*, IN".<II)/,CC (N,N)pIN*,N

VNORBMALIZE[0]V VCOMPRESS[t]V

V SNORMALIZE V;K;P;Q;T;IN V COMPRESS;T
[1] S(PoV)PK'I [1] T-iO
[2] P-ltBQINl-.V [2] kXi
[31 S[T-(VoV[lBQ])/INL]P [3] Q-titpB
[4] PlP+l [4] T-T,C2[B[K;1]1;]
[5] Q~(-QcT)/Q [5] K-K*I/B[K;]
[6]3 +-3xopoQ t[6] .xXS2!S

v [7] GC2(((pT)BN),N)PT

INITIALIZE
NUMBER OF STATES.N
0:

NUMBER OF INPUTS, P
0:

ENTER ROWS OF THE STATE TABLE AS REQUESTED
1I
0:

37

0:

3
0:

4
0:

6

6
0:

n7

0:

48

16

25

24

13

3 3
OUTPUT TABLE REQUIRED? (YES. 110)
NO

11 2

A IC.- C,-
B ID.- ,.-
C IA,- P,-
D IB,- E,-
E B,.- D,-
P IA,- C,-
C (D.- D,-
H [C,- C,-

SP

o 0 (A);(B);(C);(D) ;(E);(F);(C) ;(H)
1 1 (A);(B);(C F);(D);(E);(C);(R)
2 1 (A);(B);(C);(D E);(F):(C);(1N)
3 1 (A B);(C D);(E F);(C R)
4 2 (A B C D);(E F G H)
5 2 (A);(B);(C F);(D E);(C);(H)
6 3 (A B);(C D E F);(G H)
7 4 (A B C D E F G H)

VORDER[E]V

v P-ORDER Y;I;J
[1] P-tO
[2] J-(I-lf)pY
[3] P-PY COVER I
[4q] +3 xtJaII+l
[5] P+(2pJ)oP

V

VSUM[0]V

V R-I SUM J.K;B;C;IN
1l] 0Oxt(pI.I)+ ,]J,

[2] IN.-,R-(PI)po
[3] X+-
t4] Sl:B((IcIL[])/ IN) U(J.J[K])/IN
[5] 52:C.B U((IcI[B])/IN) U(JeJ[BI)/IN
[6] -S3x-(^/C.B)A^/BcC
[7] -S2,B-C

VpRT[E]V [8] S3:R[B]
[9] *S1xt(

v Z-PRT K;A;B;C;IN [10] R+NORM
[1] C1lfIN-N v
[2] Z-to
[2] B'r/PP[K;]
[4] ZIZ.'( '((1,(2x-ltpA)p 0 1)\A-ALPHClIt(PP[E;]=C)/IN]).');'
[5] -x4BZC+C+l
[6] Z-t1Z

v

(R) EK-R 0
rALIZE R

VU[U]V

v z-x u Y
[1] Z Z[4Z+T,(~ XcY)/X]

V7'RjiL'Tfi iV

O T*PRIPT;O;I; 'Ip
[I1 T.(Sxp)p 1 0 0 0 O)\ALPill1iFI+EAr^
F21 TF:2+C.x-l+Ptr+,pi,'
r31 C[ ;31+l+ALP; i2I+0Ull
r41 T-(- 2 3 +PT)(T
[51 Trl;-1+5TxIp],ArpN T2+?] P
[63 TE[2+Jt :1 ]+ALPilF ri+ 0 .-t,
[7] T:J[ 3 'J'
[8 T[r2;]+'-l

FIG. 6.1
SP FUNCTIONS

(28)

VCOVER[U]V

v S-X COVER I;R;T;Q;K
[11 Rr[/X[I;l
[2] S-+It(K-I)tpX
[3] -xtl=mpT*(X[I;]=K)/ i ltpX
[4] S+S^^/Q:=lqQ'X[;T1
[51] -32REX+El

?



are for those functions as shown in Figure 6.1.

The FORTRAN program [10] together with the APL documentation

[11] were given to another of the authors of this.report (HAES)

with instructions to start with the FORTRAN program, determine

how it worked, get it running on Syracuse University computing

facilities, write one or more programs or collection(s) of

functions in APL to produce results which were, it was hoped, as

good as, if not better than, the APL functions cited above.

Finally, comparisons among the cases: FORTRAN, his APL functions

and SP from Figure 6.1 were to be made.

These efforts are discussed in the next section with the

results given in the section following that.

It should be noted that at the time the programmer (HAES)

began, he knew neither FORTRAN nor APL but he did know ALGOL.

Also, it was not trivial to say "get the program running" because

between 1967 and 1971 and between the compiler implementation

available to Piatkowski on the Model 67 at Michigan and the one

available to Spaanenburg on the Model 50 running under SUOS at

Syracuse changes had been made in the FORTRAN compiler so that

alterations had to be made to WRITE and FORMAT statements in

order to get the program to run.

6.1 Translating from FORTRAN to APL

In the following an effort is made to enable the reader, who

is familiar with the algorithm, to follow the FORTRAN program and

the APL functions; however, additional background material may

be found in Hartmanis and Stearns [12].

Figure 6.2 shows an annotated Flow Chart of the FORTRAN

program as it appeared in [10]. In that program TP1 and TP2 are

two linear arrays in each of which temporary information on a

single partition may be stored. The format for TP1 and TP2 is

the same as for a single PP array segment which we consider next.

(29)



R- 1; NPO 

I /;

B 

. MARK. IN PP AR.RAY:
IPRESE4T PARTITleNS3 =
Ml,,{ FVU1U E- PAn'TeS)}

MARK ALL. PRESEN ,
PAR'rTleNS AS eLD

' 1 

Ner I

SCAN. PP ARRAY, NUMmE
AND PZMT PR.SENT ·
PARI"TleNS ALtgCx Wrn
succEsseR. AND Q'J-
SIRNGLETeN BSL.CKS
UP- DATE S2 ARRAY;
CHECK IF PAz-rrieN
BEING P-RIED S '1e

I1
I PRIT SZ ARRPA Y

F

TO

.re ' ' .. '.. ] : .
i]~)~ ( .3 

rNPVT N

FIG 6.2.

.-.FORTRAN .OWCT'': ---.

(30)'

REAV NAME,
H, P, FS-TABLE;

PRIrN NAME,
N, P, FS-TABL

.I
PRINT TITLE5

AND ReW ZERe
eF LATrrICE

ZIE_ I
LeAP ZERG PAiR'
.'r'teN INTe PP
ARRAY, LABEL AS
eLD PARTrrilN;

ZER eu-Ir s
ARRAY

ADD ALL NEW PAIR. SUMS
OF PRESENrT PAR'TITTI4S

"M mlE PP ARRAY AS
FUTURE PARTITIeNS

ADD ALL Z- SA E
- ENERATeiR -1
PP ARRAY AS FR-URIE
PART"eN 

)

SCAN 2-STA-TE
6ENERATeRS, LABEL
BASIC GENEERAntRS,
LABEL LA"rICE

VrATMS AS PREWET
PARrlfl NS

I

r

_2 RI
-: : : ,

.z

®

Q,



PP, in whirh the permanent partition information is stored, is

also a linear array. Each partition occupies a segment of length

N + 4 in PP where N is the number of states in the machine under

consideration. The segment is coded as follows:

--RANK Size

-1- old partition Number of blocks

0 - present partition in this partition

> 1 - future partition

l~ e i HoIN elements coding
--_-- -- i .......... Ithe partition

Number Type

< 0 - temporary ID 1 - basic generator

= 0 - zero partition 2 - two state generator

> 0 - final ID 3 - none of the above

cells 5,6 ...N + 4 contain coding for the partition. The i + 4th

cell marks the block of state i. Two states are in the same

block if and only if their cells contain the same number. When

the partition is in normal form, cell 5 corresponding to state 1

will contain a 1. The lowest numbered state which is not in the

same block as state 1 is marked with 2. The address of the

segment corresponds to the location of the N + 4th cell. In

APL a normalized partition the number of blocks would be given

by F/PP removing the need of SIZE. PPM is the index of the

last cell of the last partition in the PP array. One of the

philosophic problems is that PP could have been stored as a

matrix but keeping PP a vector and being somewhat more

independent of N is of value when running a number of problems

interactively and in attempting an optimization of allocated

storage in the compiler environment. This trade-off slightly

complicates the understanding of the program however.

S2 is a two-dimensional array and S2(I,J) is the number

(either temporary or final) of the two-state generator partition

(31)



obtained by placing states I and J (and only those states) in the

same block. If S2(I,J) - 0, then the partition is not yet known.

The following subroutines appear in the FORTRAN program and

hence play an important role in the APL implementation.

SUM(N,TP1,TP2) is a subroutine which places the sum (the lattice

function for partitions) of TP1 and TP2 into TP1.

REDUCE(N,P,FS,TP1) is a subroutine which replaces the partition

in TP1 with the smallest partition in SP which contains it.

NORSIZ(N,TP])is a subroutine which normalizes and sizes the

partition given in TP1.

EQUAL(N,PPM,TP1,PP,LEQ,PPEQ) is a subroutine which scans the

partitions in PP and compares them with the partition in TP1 we

set.

LEQ 4- 1 if a match is found
0 otherwise

If there is a match PPEQ in the address of the PP-partition

identical to the TP1 partition. All partitions must be normalized

and sized.

LESS(J,I,N,PP) is a logical function whose value is .TRUE. if and

only if the partition at location J in PP is less than or equal

to the partition at location I,

Figure 6.3 which is continued on a number of pages shows both

the FORTRAN program and a collection of APL functions which

comprise the FORTRAN to APL translation efforts. The FORTRAN

program contains notation along the left margin; the numbers

denote segments of the program corresponding to the numbers on

the Annotated Flow Chart of Figure 6.2. Located near the

appropriate section of the FORTRAN program are (usually) three

APL functions having the name format of FNO, FN1, and FNX.

These are grouped in three groups. The first list in )GRP ZERO

(32)

6



)GRPS
FIRST XXxx ZERO

)C.dF ZzC0o
I,.ITILIi' SP SP10 SP200 SP30
SUM REDUCE NORSIZ EQUAL LESS FIAT

)GRP FIRST
INITIALIZE SP1 SPll SP211 SP31
SUM1 REDUCE1 NORSIZ1 EQUAL1 LESS1 PIATI

)GRP XXXX
INITIALIZE SPX SP1X SP2XX SP3X
SUMX REDUCEX NORSIZX EQUALX LESSX PIATX

VPIAT[0]V

v FIAT
[1] INITIALIZE
[2] SP
[3] SP10
[4] SP200
[5] 'NEW MACHINE ( O=NO 1=YES )?'
[6] *0

V

VPIAT1L[D]

v PIAT1
[1] INITIALIZE
[2] SP1
[3] SPll
(4 SP211
[5] 'NEW MACHINE ( O=N , 1=YTES ) 7'

VPIATX[O]v

v PIATX
[1] INITIALIZE
[2] SFX
[3] SPlX
[L4 SP2XX
[S] 'NEW MACHINE ( O=NO , 1=YES ) ?'
[6] *0

V

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

210
[11:
[121
[131
[14
[15
[1(0
[17] 2
[18]
[19

[20]
[21
[22]
[23]
(240
[25;
[26]
[27

[284

[301
i 41i

[33]
[344
[35
[36]
[37]
[38;
[39]
[40]
[41
[42]
[43]

[46]
[47

VINITIALIZE[[]V

V INITIALIZE
'SP LATTICE PROGRAM'
'MACHINE NAME ?'
NAME+,

SFSOA:'NUMBER OF STATES , N
1+U
(O<DNx101-N)/SPlOOA

'N OUT OF RANGE'
+SPSOA

SP10OA:'NUMBER OF INPUTS , P'

i (O<Px6-P)/SP150
'P OUT OF RANGE'
.SP1OOA

SP150: 'STATE TRANSITION TABLE:'
'FOR EACH I ENTER ';P;' NUMBERS (SN)'

I 'CORRESPONDING TO FS[I;:J FOR J=l TO ';P
I FS-(,.P)pO

I+1
i S200A: 'I= ':I

FS[I; IP]-
I -(NI-I+1I)/SP 200A

i 1Go'-'

i 'MACUINE NAME = ';NAME
N ';N;' FP ';P

16p' -'
I I

'2aiTE TRANSITIU.- TAIL3;'

IMPUTS'
'STATE ' iP

1.1
SP230A:I;' ' :FS[I;P]

(NI.ItI1)F/SP230A

16p'-''

'LATTICE TABLE'
'CODE: A = LATTICE ATOM'

B = BASIC GENERATOR'
2 = TWO-STATE GENERATOR'

'NO. ROW TYPE'
0 0 ZERO'

1

2

IMPLICIT INIEGER#2( A-Z
REAL*8 TYPE

,LOGICAL LESS
DIMENSION FSO100,5) ,NAME(50),PP(500) ,S2( 100,100)
DIMENSION SUCC(I100) ,TPI104),TP2(104),TYPE4)
DATA TYPE/I'A2',I B2', 21,' I/
WRITE(3,10)

10 FORMAT(//I9H SP LATTICE PROGRAM)
20 WRITE(3,30)
30 FORMAT(//40H MACHINE NAME?ITYPE UP TO 50 CHARACIEKS))

READ(1,40)NAME
40 FORMAT(50AI)
50 WRITE(3,60)
60 FORMATI/44H N?(TYPE A 3-DIGIT NUMBER IN RANGE 1 TO 100O)

READI 1,70)N
70 FORMAT(13)

IF(N*( 101-N))80,80,100
80 WRITE(3,90)
90 FORMAT(17H***N OUT OF RANGE)

GO TO 50
100 WRITE13,110)
110 FORMAT(/42H P?(TYPE A 1-DIGIT NUMBER IN RANGE I 10 5)

READI l,12O)P
120 FJRMAT( I1)

IFIP*I6-P) 1130,130,150
130 WRITE(3,140)
140 FORMATIT17H**P OUT OF RANGE)

GIO TO 100
150 WRITE(3,1601
160 FORMAT(//24H STATE TRANSITION TABLE:)

WRITE3,170)P
170 FORMAT(16H FOR EACH I TYPE,12,16H 3-DIGIT NUMBERS)

WRITE13,1711
171 FORMAT(24H SEPARATED BY COMMAS AND)

WRITE13,172)
172 FORMATI25H CORRESPONDING TO FS(I,JI))

WRITE(3, 180)ROP
180 FORMAIIIH FOR J=l TOn,13)

DO 200 I=IIN
WRITE(3.190)1

190 FORMATI(/H I = 113)
200 REAO(1,210) FS)I ,J),J=I,P)
210 FORMATISI13. IX)I

WRITE(3,213)
WRITEl3,10)
WRITE(3,211)NAME

211 FORMAT(/16H MACHINE NAME = ,50AI)
WRITE13,212)N,P

212 FORMATI/SH N = ' 3,5X4HP = ,13)
WRITE(3,213)

213 FORMAT(/40( 1H-))
WRITE(3,214)

214 FORMATI/23H STATE TRANSITION TABLE)
WRITE(3,220)I I,1=,P)

220 FORMATI/12X 6HINPUTS/6H STATE,2x,515)
WRITE(3,221)

221 FORMAT( IH 
DO 230 I=1,N

230 WRITEI3,240 1I1,FSI I,J),J=I,P)
240 FORMAT(I144XI15)

WRITE'3,213)
WRITE 3,2501

250 FORMATI/14H LATTICE TABLE)
WRITE(3,251)

251 FORMATI/26H TYPE CODE: A=LATTICE ATOM)
WRITE(3,252)

252 FORMAT)I 2X,17HR =BASIC GENERATOR)
WRITE(3,253{

253 FORMATI12X,21H2=TWO-STATE GENERATOR)
WRITEI3,260)

260 FORMAT(/15H NO. ROW TYPE)
WRITE3, 270)

270 FORMATI/ISH O 0 ZERO)

FIG, 6.3
TRANSLATION STEPS

133)

SP40 SP50

SP41 SP50

SP4X SP50

II

II
II
II
II
II
31

11
1 -



vsp[ojv
v SP

[1) N3-N+3
([23 N14+N+4
[3] PPI+N4
[4) PN-I1
(S] PPFN4p0
[6] S32(N.N)p0
[7] PP[13+1
[83 pp[23] 0
L9] PP[3]-3
(10] PF[4]-N
(11] I+1
[12] ;1'280A:Pl[I+4]tI
[13] J+I
[14] SP280:S52[I;J]-0
[15] S (NaJ1 J+1)/ SP280B
[16] **-(D2IItl)/SP280A
[17] TPl1N4p0
(18] TP2-N4pO
[19] It1
[20] SP400A:J'I
[21) SP400B1:(I=J)/SP400
122] ;-1
[23] SP290A:TP1[X+4]XE
[24] -(nKC-tK+l)/SP290A
[25] TPI[J+4]I-
[26] K-1
[27] SP370A:.(FS[I;X]<FS[J;K1)/SP298
[28] +(FS[I;K;]=FSJ;K])/SP300
[29] S2T-S2[FSLJ;K];FS[I;KX]
(303 -SP299
[31] SP298:S2T-S2[FS[I;K];FSLJ;X]]
[32] Si-299:-t(S2TO)/SP320
[33] SP300:M-1
[34] SP310A:TP2[M+4]-M
[35)] +(ZMNM+l)VS P310A
[36] TP2[FS[J;K]+4]-FS[I;K]
[37] +SP360
1383 S51320:M+2
[39] SP340A:-(PPLM1S2T)2/SP340
[403 MT*M-2
[41] 3SP350
[42] SP340:.(PPMNMM+NN 4)/FS340A
[43] SP350:M-5
[44] SP355A:TP2[M]-PP[MTt+]
[45)] (N4ZR-1M+1l)/SP355A
[46] SP360:SUM
[47] -(P2X-K+l)/SP370A
[48] REDUCE
[41] NORSIZ
[50] EQUAL
(51] *(LEQSO)/SP390
[52] S2[I;J]7PP[PPE Q-N+2]
[53] -SP400
[54] SP390:PPfPPN4p0
[55 K-4
[56] SP395A:PP[PPMF+ K]-TPl[K]
[57)] (N.4KK+tl)/SP395A
[58] PP[PPM+3]-2
[59] ppPPPIt+2]-Pli
[60] PP[PPF+tl-0o
(61 S2[I;J']+PN
[62] PN-P1-1
[6323 pPMPPM+114
[64] SP400:'(1J2J+ 1 )/SPIS400B
[65)] (NR2II+1)/SP4OOA

V

VSPiO[D]V

V SP10
[1] Rl1
[2] 1NP-0
([3] ;E28t2xN
[4] I1N2
[5] SP470A:Jd1
([6] SP405A:TPl[Jt+4]J
([7] .(NJ.J+l)/SP405A
[8] o-0
[9] J-N2
[10] SP430A:-((JT=I)VPP[I-N)]PP[J-NF)/SP430
[11 -i(-J LESS I)/SP430
[123 S+1
[13] JT'J-N4
[14] K+5
[15] SP420A:TP2[(K]PP[JT+t]
(16]3 (N42KXK+1)/SP420A
[17] SUM
[18] SP430:(PPM2JJt4JN4)/SP430A
[193] (S=O)/SP450
[20] NORSIZ
(21] PP[I-N+33-1I
[22] +(TP1[4]=PP[I-N])/SP470
(23] SP450:PP[I-N+l]+l
(24] SP470:-((PPMIItI+N4))/S P470A

V

271 PP(1)=1
PP(2)=O
PP(3I=3
PP(4)=N
N3=N+3

3:~ N4=N+4
PPM=N4
PN=-1
DO 280 I=l,N
PP( 1+4)=I
DO 280 J=1,N

280 S2(1,J)=O
DO 400 I=lN
DO 400 J=l,N
IF(I.EO.J) GO TO 400
DO 290 K=1,N

290 TPI(K+4)=K
TPI(J+4)=I
DO 370 K=1,P
IF(FS(I.K)-FS(JK)) 298,300,297

297 S2T=SZ(FS(J,K),FS(I.KI
GO TO 299

298 S2T=S2(FSII,K),FS(J,K)
299 IF(S2T) 320,300,320
300 DO 310 M=I,N
310 TP2(M+4)=M

TP2(FS(JKI)+4)=FS(I,K)
GO TO 360

320 DO 340 M=2,PPM,N4
IF(PP(M)-S2T) 340,330,340

330 MT=M-2

GO TO 350
4 340 CONTINUE

350 DO 355 M=5,N4
355 1P2(M)=PP(MT+M)
360 CALL SUM(N,TPI,TP2)
370 CONTINUE

CALL REDUCE(N,PFS,TPI)
CALL NORSIZ(N,TP1)
CALL EOUAL(N,PPM,TPI,PP,LEO,PPEO)
IF(LEO) 390,390,380

3RO8 S2(I,J)=PP(PPE-N-2)
GO) Tl 400

390 D{1 395 K=4,N4
395 PP(PPM+K)=TP1(K)

PP(PPM+3)=2
PP(PPM+2)=PN
PP(PPM+I)=O
S2(I,J)=PN
PN=PN-I
PPM=PPM+N4

400 CONTINUE

5

6:

R=l
NP=O
N2=2*N+8
DO 470 I=N2,PPM,N4
DO 405 J=1,N

405 TP1(J+4)=J
S=O
DO 430 J=N2,PPM,N4
IF(J.EQ.I.UR.PP(I-N).GE.PP(J-N)) rO TO 430
IF(.NOT.(LESS(J,I,N,pp))) GO TO 430
S=1
JT=J-N4
DO 420 K=5,N4

420 TP2(KI=PP(JT+K)
CALL SUM(N,TPI,TP2)

430 CONTINUE
IF(S) 440,450,440

440 CALL NORSIZ(N,TPI)
PP( I-N-3)=-1
IF(TPI(4)-PP(I-N)) 450,470,450

450 PP(I-N-I)=I
470 CONTINUE

FIG, 6,3
CONTINUED

U3"4



VSP200[03V

V SP200
[1] SP471:I-1
[2] SP641A:-(PP[I]tO)/SP641
[3] NP-NPtl
[4] S$PP[I+t1
[5] J.1
[6] SP500A:KEJ
[7] SPSOB:-(S2[J;E])S)/SP500
[18 S2[J;EK]+N
L9] SP500:,(lŽKEK+l1)/ SP500B

O10] -(NJ.Jtl)/)/SP 500A
[11] PP[I+tl]NP
[12] ITI+N3
[13] SUCClOpO
[14] J=l
[15) SP510A:-(PP[£Jl))/ SP510
[16] JT-J+N3
[17] +(-JT LESS IT)/SP510
[18] PP[J]=2
[19] SP5lo: (PPl2Jt-J+4))/ SP51A A
[20] J-1
[21] SP530A: (PP[J]s2)/SP) 530
[22] JTJ+tN3
[23] K1I
[24] SP520A:+((PP[]E2) vK=J)/ )SP520
[25) KT]-KtN3
[26] -(JT LESS KT)/SP525
[27] SP520:-(PPFMFEK-tK+U4)/SP520A
[281 SUCC$SUCC.PP[Jtl]
[29] +SP530
[30] S1P525:PP[J]-1
[31] SP530:-(PPt12SJt+N4 )/SP530A
[32] JSi
[33] SP535A:-(PP[J]r2)/SP535
[34] PP[J]I-1
[35] SP535:-(PPF5J5J+N4)/SP535A
[36] +(R- l)/SP550
[37] T-1
[383] SP600
[39] SP550:-(PP[I+2] 1)/SP570
[40] T-2
[41] -SP600
[423 SP570:-(pp t[I+2]2)/SP590
[43) T-3
[44] -SPGOO
[45] SP590:T-4
[46] SP600:' ';NP;' ;R' ';'AB2 B2 2

[(3xT-1)+t13]' SUCC= ';SUCC
[47] JP-PPLI+3]
[48] J-1
['9] SPG40OA:SUCC-OpS+O
[50] K-1
051] SP630A:-F(PP[I+3+K]J))/SP630

[52] 3-5+1
[53] SUCC-SUCC.,
[54] SP630:-(NI2KKt1 )/SP630A
[550] (SS1)/SP640
[56] ' BLOCK ';J;': ';SUCC
[57 ] SF640:-(JPZJŽJ+l)/SPG40A
L58] +(PP[I+3]=1)/SP840
[59] SP641:-(ppF 2IF I+N4)/SP541A
[60] SP30
[61] SP40
[62] -SP471
[63] I840:SP50

V

VSP30[0]V

V SP30
[1] R-Rtl
[2] 1Il
[3] SP760A:-(PP[I]0O)/S 7C0
L 4] J+I
[5] SP759A:-(I(T)VPP£S)•01/5P759
[6] K-4
[7] SP720A:TPl[[K+l]PPIt+K ]
[8] TP2[K+I]-PP[ J+K]
[9] 1(N32K+tl)/1SP720A
[lo SUMA
[11] NORSIZ
[12] EQUAL
[13] -(LEQO)/SP759
[14] pp+PPN4pO

[15] K-4
[16] SP750A:PP[PPtM+K]-TPi[K]
[17] -(N4K-E+1))/SP750A
[18] PP[PPMtl-1.-
[19] PP[PPMIt2)]-PN
[20] PN*PN-1
[21] PP[PPM+3]-3
[22] PPN-+PPM+D4
[23] SP759:-(PPM J - J t+ N 4)/ S P 7 59A
[24] SP760:-(PPM2tII+N4)/SP760A

VSP40[D0]V

V SP40
[1] I1i
[2] SP76IA:.(PP[I]so)/SP761
[3] PP[I]hI
[4] SP761:-(PPM2I I +t N 4 )/SP7 61 A

[5) IN4
£65 SP830A:-(PP [ I- N 3] = 1) /

S P8 30
[7] J-N4
£8] SP810A:( (pP[J-N3]=l1)vI=J)/S P810
[9] -(J LESS I)/SP830

[10] SP810:(PPMZ Js J +t N 4 )/SP81 0 A

[11] PP[I-113)-0
[12] SP830:-(PPMaI1ItN4)/SP830A

V I

Y

1l

8 

FI

10
11'

FIG, 6.3
CONTINUED
-, (35)

471 DO 641 I=I,PPM,N4
IF(PPI I) 641,480,641

480 NP=NP+1
S=PPIIlI)
00 500 J=1,N
00 500 K=J,N
IF(SZ2J,K)-S) 500,490,500

490 S2(J,K)=NP
500 CONTINUE

PPf I+I=NP
I=TI+N3
S=0
00 510 J=l,PPM,N4
IF(PP(JI.NE.1I GO TO 510
JT=J+N3
IF(.NOT.LESSIJT,IT,N,PPI) G) TO 510
PP(J)=2

510 CONTINUE
DO 530 J=I,PPM,N4
IF(PP(J).NE.2) GO TO 530
J T=J+N3
00 520 K=1,PPM,N4
IF(PP(K).NE.2.0R.K.E4.J) GO TO 520
KT=K+N3
IF(LESSJT,KT,N,PP) ) GO TO 525

520 CUNTINUE

SUCC(S)=PP(J+l)
GO TO 530

525 PP(J)=I
530 CONTINUE

DOI 535 J=l,PPM,N4
IFIPP(JI.EO.2) PP(J)=I

535 CONTINUE
IF(R-I) 550,540,550

540 T=I
GOl TO 600

550 IFIPP(I2-I)11 570,560,570
560 T=2

60 TO 600
570 IFIPP(I+21)-21 590,580,590
580 T=3

GO TO 600
590 T=4
600 WRITE(3,601INP,R,TYPE(TI ,ISUCC(J),J=I,S)
601 FIRMAT(/13,15,3,A3,3XA3.3XSHSIJCC:.1014,(/21X.1014) 
610 JP=PP(I+3)

110 640 J=l,JP
S=0
no 630 K=l,N
IF(PPI +3+K)-J ) 630,620,630

620 S=S+1
SUCC(SI=K

630 CONTINUE
IF(S-1) 640,640,635

635 WRITE(3,636)J,(SUCC(KI,K=l,S)
636 FORMATi/19X,6HHLOCK ,I3,1H:,l104,(/Z2RX,104)) 
640 CONTINIIE

IFIPPII+31.EO.I) GO TO 840
641 Cl)NTINUIE

642 R=R+-
DO 760 I=I,PPM,N4
IF(PP(I I 760,700,760

700 IT=-IN3
on 759 J=I,PPM,N4
IFI I.E.J.OR.PP(J).NE.OI GO TO 759
D00 720 K=4,N3
1PIIK+Il=PP(I+KI

720 TP2(K+I)=PPI(JK)
CALL SUMIN,TPI,TP2)
CALL NORSIZIN,TPLI
CALL EQUAL(N,PPM,TPI,PP,LEO,PPEQ)
IF(LEO) 759,740,759

740 O0 750 K=4,N4
750 PPfPPMKI)=TPI(KI

PP(PPM+1I=-I
PP(PPM+2)=PN
PN=PN-1
PP(PPM+3)=3
PPM=PPN+N4

759 CONTINUE
760 CONTINUE

DO 761 =IFPPM,N4
IF(PP(II.EQ.O) PP(I)=I

761 CONTINUE
DO 830 I=N4,PPM,N4
IF(PP(I-N31.EQO.I GO TO 830
00 810 J=N4,PPM,N4
IFIPPIJ-N3).EO.I.OR.I.E0.J) GO TO 10
IF(LESS(J,I,N,PP)) GO TO 830

810 CONTINUE
PP I-N31)=0

830 CONTINUE
GO TO 471



vspF[Qlv
V SPI

[1] PPMlN4-i+N3-N+3
[2] PFI-1
[3) PP-1,0,3,N,IN
[4] $52(N,N)pO
[5] TPI-TP2-N4pO
[6] I-1
[7] SP400A:J+I
[8] SP4005B:(I=J)/SP400
19] TPI-TP[14]).((J-1)+tN),I.(J-N)+iN
[10] KXI
[11] SP370A:.(FS[I;K]=FS[J;K])/SP300
£12] -(OS2T-S2[FS[I;K]LFS[J;K];FSLI;K]rFS[J;K]])/SP320
[13] SP300:TP2.TP2[14],((FS[J;K-l)9tN).FS[I;K].(FS[J;K]-1)tlN
[14] -,SP360
[15] SP320:TP2-TP2[1 4],PP[4+t(N)+MT+N4x- l+(((PPfI+N4),N4)pPP)[;

2)]S2T]
[16] SI'360:SUM1
[17] -(PFKXK+i))/SP370A
[18] REDUCE1
[19] NORSIZ1
[20] EQUALl
[21] -(LEQ=O)/SPF39
[22] 52[I;J]-PPLPPEQ-N+2]
[23] JSP400
[24] SP390:PPPP,O,PN,2. .TP1[3+tN+l
[25] S2[I;J]-PN
[26] PNPN-1I
[27] PPi--PPM+N4
[28] SP400: (NJ-J+1)/1SP400 B
[29] '-(2I-It+l)/ SP400A

VSPII[2]V

V SPil
[1] lP~-R+l
[2] I-N2-8+2xN
[3) SP470A:TPl-TPl1[14],N
[4] S+O
[5] J+N2
[6£ SP43OA:-((J=I)VFF[I-NFPP P[J-N])/SP430
[7] -(-J LESS1 I)/SP430
[8] S-1
[9] TP2+TP2C14],PP[J-N-iN]
11)] su-l
(11llSP430:-(PPMJJtJ+N4)/SP430 A
[12] -(S=O)/SP450
[13] iOHSI Z1
[14] PPLI-r+3]+-i
[15] (TPLF4]=PP[I-N]))/ SP470
[16] SP450:PP[I-1]+tll
[17] SP 4 70:-(PPMkI+ItN4)/SP470A

V

[I]
[2]
[3]
[4]
[S]
[6]
[7]
£8]
[9]
[10
[11
[12]
[13]
[142
[15
[16
[17
[13]
[19]
[i 3
[21
[22
[23
[24
[25:
[26
[27]
[281
[29]

[30:
[31:
[32:
[33:
[34:
£35:
[36:
[37:
[38:
[39]

VSP211 [)]V

V SP211
SP471 :IT1
SP641A:-(PP[I)0O)/SF641
S2-(S-PP[Il+I-NP-2: l1)+:2x--S+S2=PF[I+1t
IT*I+N3
SUCCtOpQ
Jv1

SP51OA:-(PP[J]tl)/SP510
JTJ+N3

-(-JT LESS1 IT)/SP510
] PP[J2+2
SP510:-'(PP;:ZJ-J+N4)/SP510A

I JS-
I SF530A:((PPP[J]2)/ SP530
I JT+7-J+1t3

SP520A:-((PP[Kl]2)vK=J)/SP520
] KT-K+t3
] -(JT LESS1 KT)/5525

i 520: O-(PPM2KK+t4 /SF5 2 0
j SUCC-SUCC,PP[J+l]
I -SP530
ISP525:PP[J]-1
ISP530:-(PPM2J-J+ND4)/SP530A
] J-1
SP535A:-(PPF[J]2)/SP535

ISP535: (PPMJ+Jt+ tN4)/SP535A
Tt+I+((R=I),(PP[I+2]= 1 2),1)/:4

ji;P;' ';R;' ';'ABB2B2 2 '[(3+T-
3];' SUCC= ';SUCC

ISP640A:(1=+t/K+PP[I+t3t+N]J)/SP640
:; BLOCK ';J;' : ';K/N

SP640:(PP[It3+3 2J+J+1)/SP 640A
I +(PP[I+t3=1)/SP840
I SP41:-(PPMFII+Nt4)/SP641A
i SP31
] SP41
i SP471
SP840:SP50

V

-1 )+

vsPX[D]v

V SPX
[13 N4-l-tN31Nt43PN- 1

[2] PP-(l,N4)pl,0,3,N,tN
[3] S2t(N,N)pTPliTP2-NpO
[4] I-1
[5] SP400A:JIt+ l
[6] SP400B:TPl+(iJ-1),I.J+tN-J
[7] K-1
[8) SP37OA:.(OtS2T+S2[FS[I;K]LFS[J;K];FS[I;K]rFS[J;K]])/SP320
[9] TP2-(iFSLJ; K]-I),FS[I;K].FS[J;K]+tN-FS [J;K]
[10)] SP360
[11] SP320:TP2-PP[PP[;2]1S2T;4+tN]
[12] SP360:SUMX
[13] -(PK-'K+t)/SP 370A
[14] REDUCEX
[15] NORSIZX
[16] EQUALX
[17 -(O:=LEQ)/SP390
[18] S2[I;J]FPP[PPEQ;2]
[19] -SP400
[20] SP390:PP+(( IPNPN-1),114)p( .PP),,O.(S2[I;J]+PN),2.(F/TP),TP
[21] SP400:-+(fJtJ+t1)/SP 400B
[22] *((N-1)I-I+ 1)/SP400A

-V 

VSPlx[O]V

V SP1X
[1] I'1+R-NP-0O
£2) SP470A:S+-lTPltlN
[3] J-2
[4] SP43OA:+(pp[I;4]2PP[J;4])/SP430
[5] -(J LESSX I)/SP430
[6] S-I+TP2-PP[J;4+tN]
[7] SUMX
[8] SP430:((I PN)2J-J+1))/SP 430A
[9] -(S=0)/SP450
[10] NORSIZX
[11] PP[I;1]- I
[12] (ppP[I;4]=F/TPl)/SP470
[13] SP450:PP[I;3]-1
[14] SP470:*-((IPN)-I+-1l1)/SF470A

V

VSP2XX[0]V

V SP2XX
[1] SP471:I-1
[21 SP641A:-(PP[I;;]1O)/SP641
[3] S2 (SxPPF[I;2]NPiP NF+i)t+S2x-S+S2=PP[I;2 ]

[4] SUCC-OpO
[5] J-l
[6] SP5SlA:(pp [J;*1]31)/SP51
[7] -(J LESSX I)/SP510
[8] PPEJ;1]+2
[9] SP5s10:((IPN)2JJtlJ)/ SPSIOA
[10] J-1
[11l SP530A:-(PP[J;1])2)/SP530
[12] K-i
[13] SP520A:-((PP[K;1)]2)vK=J)/S P520
[14] -(-J LESSX K)/SP525
[15] SP520:I(( PN)K-gK+l)/SP520A
[16] SUCC-SUCC.PP[J;2]
[17] -'Si530
[18] SP525:PP[J; 11]+
[15] SP530:-(1F PN)5JJtl+)/SP530A
[20) PP;1 ]i(PP[ ;1 )xS)tSPP[ ;1] =2

[21] T-1t((R=l),(PP[I;3]= 1 2),1)/t4
[22] ';NP;' ;R;' ;'AB2 S2 2 '[(3xT-

3];' SUCC= ';SUCC
[23] J-i
[24) SP640A:-(l=+ /K-PP[I;4+tN]Jc)/SP640
[251 ' ;' BLOCK ';J;' ';K/tN
[26] SP640:*(PP[I;4]J-J+J+)/SP640A
[27] *(PP[I;4]=1)/SP840
[28] SP641:*(( PN)II+1-tl)/SP641A
[29] SP3X
[30] SP4X
[31] -SP471
[32] SP840:SP50

V

FIG, 6.3
CONTINUED

(36)

I



vsP31[D]V

V SP31
I13 R-RtIl-
[2] SP760A:-(PP[CI]O)/SP760
[3] JtI
[4] SP759A:-((I=J)vPP[J]O))/ SP759
151 TPliTPil[4].PP [I++3tN]
[6] TP2-TP2[14],PP[J+3+tN]
[7] SUM1
[8] NORSIZ1

)91 EQUAL1
[10)] (LEQ.O)/SP759
[11] PP-PP,4n00
[12] PP[PPM+.N4]C-l.PN.3,TPl[3+tlNtl
[13] PNSPN-1
[14) PPM-PPM+N4
[15] SP7S9:+(PPMJ*-Jt+N4)/SP759A
[16] SP760:.(PPMŽI-I+N4)/SP760A

VSP4([D]V

V SP41
[1] I'1
[2] SP761A:I(PP[Isc )/ SP761
[3) PPF[I]I
[4] SP761:+(PFP I-It+N4)/SP761 A
[5] I-N4
[6] SP830A:.(PP[I-N33]=)/ SP830
[7] J.-N4
[8] SP810A:-((PP[J-N3]=t)vI=J)/SP810
[9] +(J LESSi I)/SP830
[10] SP810:(PPMPAJ-JtD+4)/SP810A
[11] PP[I-N3]0o
[12] SP830:-(PPMkI-ItN4)/SP830A

VSPso5[]v

v SP5O
[1] SP84::''
[2] 16p'-'
[3] ' '
[4] 'TWO-STATE GENERATOR TABLE'
[5] 'STATE STATE PARTITION NO.'
[6] I.i
[7] SP850A:J+I
[8] SPBSO50:(I=J)/SP85s
[9 I;' ';J;' ';S2[I;J]
[10] SP850:-(NJiJt+l)/SP850B
[11] *(NŽII+Il)/SP850A
[12] ' '
[13] 1 6 p'-'
[14]

U

PIATX
SP LATTICE PROGRAM
MACHINE NAME ?
FIAT
NUMBER OF STATES , N
C:

NUMBER OF INPUTS , P
n:

2
STATE TRANSITION TABLE:
FOR EACH I ENTER 2 NUMBERS (sN)
CORRESPONDING TO FS[I;J) FOR J=1 TO 2
I= 1
E:

37
I= 2
0:

48
1= 3
0:

16
I= 4
0:

25
I= 5
0:

24
1= 6 . .....
0:

1 3 LATTICE
I= 7 CODE: A

4 4 2

DO: .N
3 3

MACHINE NAME = PIAT
N= 8 P= 2

STATE TRANSITION TABLE

INPUTS
STATE 1 2

1 3 7
2 4 8
3 1 6
4 2 5
5 2 4
6 1 3
7 4 4
8 3 3

0

VSP3XE[Dv

v SP3X
[1] R+Rt+Il
[2] SP76?A:.(PP[I;1]O0)/SP760
[3] J-Itl
[4] SP759A:-(PP[J:l]'0)/SP759
[5] TPIFPP[I;:4+N]
[6] TP2-PP[J;4+tN]
[(7 SUMX
[8] NORSIZX
[9] EQUALX
[10o] (OLEQ)/ SP759

[11i PP-(( IPNNPN-l).N4)p( PP),-1.PN,3,(r/TPi)TP I
[12] SP759:-(( (IPFN)2J-Jtl)/SP759A
[13] SP760:( (IPN+tl)IIIt+l)/SP760A

VSP4X[O]V

V SP4X
PP] Ip[;l]*(pp C:;1]s -S)+SppC; l]=o

121 I--
[3] SP830A:-(PP£I;1]=l)/SPB30
[4] J l
[5) SPFAIA:t((PP[J;1]=l) I=J)/SP810
[6] +(-J LESSX I)/SP830
[7] SP810:-((IPN)2J-J+l)/SP810A
[8] PP[I;il]O0
[9] SP830:.(( IPN)II+)IS)/SP830 A

V

-T-
12

-_
13

1t15

E TABLE
A = LATTICE ATOM
B = BASIC GENERATOR
2 = TWO-STATE GENERATOR

ROW TYPE
o ZERO

1 1 AB2 SUCC= 0
BLOCK I: 1 2
BLOCK 2 : 3 4
BLOCK 3 : 5 6
BLOCK 4 : 7 8

2 1 AB2 SUCC= 0
BLOCK 3 : 3 6

3 1 AB2 SUCC= 0
BLOCK 4 : 4 5

4 2 B2 SUCC= 1
BLOCK 1 : 1 2 3 4
BLOCK 2 : 5 6 7 8

5 2 SUCC= 2 3
BLOCK 3 : 3 6
BLOCK 4 : 5

6 3 2 SUCC= 1 5
BLOCK 1 : 1 2
BLOCK 2 : 3 4 5 6
BLOCK 3 : 7 8

7 4 2 SUCC= 4 6
BLOCK 1 :1 2 3 4 5 6

FIG, 6.3
CONTINUED

(37)

840 WRITE(3,213)
WRITE(3,R41)

841 FORMATI/26H TWO-STATE GENERATOR TABLE I
WRITE13,8421

842 FORMA(/S5X,25H STATE STATE PARTITION NO.,/IH )
00 850 I=l,N
DO 850 J=I.N
IF(I.EO.J)I GO TO 850
WRITE13,851)I ,J,S2(I ,J)

850 CONTINUE
851 FORMAT(3x,316I

WRITE(3,2131
WRITE(3,8521

852 FORMATI/26H NEW MACHINE(0=NO, 1=YES)?)
READ( 1,120IN
IFIN) 20,860,20

860 STOP
END

TWO-STATE GENERATOR TABLE
STATE STATE PARTITION NO.
1 2 1
1 3 4
1 4 4
1 5 7
1 6 7
1 7 7
1 8 7
2 3 4
2 4 4
2 5 7
2 6 7
2 7 7
2 8 7
3 4 1
3 5 6
3 6 2
3 7 7
3 8 7
4 5 3
4 A 6
4 7 7
4 a 7
5 6
5 7 4
5 A 4
6 7 4
6 B 4
7 8 1

NEW MACHINE ( O=NO , 1=YES ) ?

7 8 0



consists of the functions obtained by a literal translation of

the FORTRAN programs. All of the DO loops in FORTRAN remain as a

loop structure in the APL functions. In the places where this

leads to obvious misuse of APL corrections are made and the

resulting programs are contained in )GRP FIRST. Function

names are of the form FN1 here. In this second attempt

assignments-are al!r, combined. For instance lines 7 through 16

of SP are combined into lines 3 and 4 of SP1 which we would

denote by SP[71,...,[16] - SP[3] [4]. In making the

transition from those functions grouped in )GRP FIRST to those

in )GRP XXXX a matrix representation was used for PP rather

than a vector form. This resulted in being able to make use of

inner and outer products in manipulating PP such as in

SPX[11] and SP1[15]. TP1 and TP2 are reduced to contain

Just the partition and not the coding information. Redundant

statements such as SP1[8] and SPi[ll] are removed. In GROUP

XXXX it is no longer necessary to keep track of PPM and

partitions are much easier to address; see SPl[ 22] +-+ SPX[18].

As shown in the last page of the Continued Figure 6.3 (p37 ),

the driving functions for each of the three stages in the FORTRAN

to APL translation are given by PIAT PIAT1 ! and PIATX. .

Figures 6.4 through 6.8 give the various translations of the

original FORTRAN subroutines: SUM, REDUCE, NORSIZ, EQUAL and

LESS. In most cases by the time the third cut at programming

was made the APL functions were down to 1 line. In SUM X a

straightforward search is made to find an I such that

(TP1 e TPII [(TP2 E TP2[I])/tN])/iN

is not empty. This reduces greatly the amount of looping compared

to SUM 1 , where all indices are found serially. In REDUCE a

vector I is again found in a rather straightforward fashion, so

that it contains all of the indices necessary to make changes

in TP1.

(38)



VREDUCE[O]V

V REDUCE;I;J;K;M
[1] RED9:Il1
[2] RED40A:J-1
(3) RED40B:-(TPl[I(t4]TPI[J+t4)/RED40
[4) K-i
[5] RED30A:-(TP[IFS[I;X]+4]= TPd l [ F S [ J ;

K
] t4 ] )/RED 3 0

16] A*TPl[FS[I;K)+]4
[7] B-TP1[FS[J;K]+9]
[8] M-5

[91 RED20A:-(TPI[M]$B)/RED20
(10] TPI[M]-A
[11] RED20:.(N4M+M+4l)/RED20A
(12] -RED9
[13] RED30:.(PKXtK+l)/RED30A
[14] RED40:.(N2J-J+l)/RED40B
[15] .(NZI-I+t)/RED40A

VREDUCEIO)3V

V REDUCEI1;I;J;K
[1] RED9:I+1
[2] RED40A:J-1
[3] RED4 0B:-(TPl[It+4]TPl[J+4])/RED40
[4) K-l
[5) RED30A:-((A-TPl[FS[I;K ] 4+

])=B* TP l [ FS [ J; K ] t 4] )/RED30

[63 TPi[4+(TPi[4+tN]=B)/N])-A
[7] -RED9
[8) RED30:-(P2KtK+l)/RED30A
[9] RED4O:*(NVJtJ+l)/RED40B
[10)] (NaII+I)/RED40A

SUBROUTINE REDUCE iN,P,FS,TPI)
IMPLICIT INTEGER*2(A-Z)
DIMENSION FS(100,5),TPI(104)

1 N45N+4
9 CONTINUE
10 DO 40 I=1,N

DO 40 J=I,N
IF(TP1(I+4).NE.TPI(J+ 4)) GO TO 40
00 30 K=I,P
IF(TPI(FSII,KI+4).EO.TPI(FS(J,K)+4)) GO TO 30
A=TPI(FS I ,K)+4)
8=TPI(FS(J,K)+4)
DO 20 M55,N4
IF(TPI(M).EQ.B) TPI(M)=A

20 CONTINUE
GO TO 9

30 CONTINUE
40 CONTINUE
50 RETURN

END

"1 7. ";!;'.:[;; ; :

[:!? ."i. [(PI:EI[3];l)/i 1 i]; fI(.[I2[2];]X[IEX];I /tFIG, 6,)/

FIG, 6,4 REDUCE
SUBROUTINE REDUCE

SUM01;J;

V SUAI;I;d;K

[2] SUM40A:.( TP 2 [ I ] = O) / S UM 40
[3) A+TP2[I]
[4] J-1

(5] SUM30A:-(TP2[J]$A)/SUN30
([6] (TPl[I:TPl[J])/SDUM20
[7) B-TP1[I]

[8] C-TP1[J]
[9] -5
[10] SUMlOA:+(TPl[K])C)/SUMl0
r11] TP1[K]-B

S12 SUM10: (N4zK*-Kl)/SUMlOA
[13] SUM20:TP2[J]30
[141 SU430:, (N4JJ+l)/S1UM30A
[151 SUM40:-(N4Z ItIt+ )/SUM40A

SUBROUTINE SUM (N,TPITP2)
IMPLICIT INTEGER*2(A-Z)
DIMENSION TPLIl04),TP21t04)
N4=N+4
DO 40 1-5,N4
IFITP2(1).EO.O) GO TO 40
A=TP92( 
DO 30 J=I,N4
IF(TP2tJ).NE.A) GO TO 30
IFITPI(I).EO.TPI(J)) GO TO 20
B=TPI(I)
C=TP1(J)
DO 10 Ks5,N4
IF(TPI(K).EQ.C) TPItK)=B

10 CONTINUE
20 TP2(J)=O
30 CONTINUE
40 CONTINUE

RETURN
END

V SUM1;I;J
[1] I-5
[2] SUM40A:.(O0A4TP2[I])/SUM40
[3) J-1
£4) SUM30A:-(TP2[J]) A)/SUM3 0

[51 -((B- T P I 1[I ) =CC T P l [ J] )/S U A 2 0

[6] TPl[4 + (T P l[ 4+t N] =C)/tN ]R B

[71 SUM20:TP2[J]+O
(81 SUM30:.(N4JJtJ)/ 1/SUM30A
[91 SUM40:+(N4zIt)I+)/ SUM40A

VSBMX[0]V

o SUMX;I;J
[1] +2xxIit((v / ( TP 2 .'

= T P 2)x (s J)v V. J( ' 2 N ) p T P
I T P 2

)/
t N

[2] 1.,,TPI[(TPIeTPI[(TP2TP2[I])/8N])/tN]TPIl[I]
V

FIG. 6,5
SUBROUTINE SUM

(39)



VNORSIZ[D]V

V NORSIZ;I;J;K
[l] I.
[2] NORIO:TPl[I])-TP[tI]
[3] *(N4aII1l))/ NOR10
[4] I-i
[5] J-S
[6] NOR30A:-(TPl1J]>O)/NOR30
[7] A-TPI[J]
[8] K-J
[9] NOR20A:-(TPl[KX]A)/N0R20
[10] TPI[K]JI
[11)] 1OR202:(N4ŽXKKlg)/NOR20A
[12] II+l
[13] DOR30:-(N4kJ-Jt+l)/N030A
[14] TPIE[4]I-1

V

VNORSIZI[O]V

V NCRSIZI;I;J
[11 TPi0 TPlt4],1- TPTP[4+lN]
[2] 1-1
[3] J5s
[4] NOR3D0A: (0<A+TPI[J])/DOR30
[5] TPIT-1+J+(TPI[-I+IJ+tS+-J]=A)/ 15tN-J3]I
[6) I-I+l
[7] 1OR30O:-(N4kJ-JI1)/DOR30A
[8] TPi[4]+I-I

VNORSIZX[U]V

V NORSIZX
[1] TPl(DN)+..-((mN),.=TP 1)[4TP1,,N;]

VEQUAL[0]V

V EQUAL;I;J
[1] I -4
[2) EQU20A:J-4
[3)] iQO 10..:-(TPltJ])PP[I+J-i.k4])/EQU20
[4] EaVlO:-(4J.tJ+l )/EQUIOA
[5] L2EQ1
[6C FPiEQ.I
[7] -0
[8] EU20: -(PTVI+I+t4Z)/6EU20A
[5] LEQ-0

V

VEQUALI[C]V

V EQUAL1
[1] -(O=LEQ-V/EQA^/(((PtiiD4),N4)PiF=PMFpTPI )[;3+ D1t])/0
[2] PPEQ-N4-EQi2

SUBROUTINE NORSIZ (NTPI)
IMPLICIT INTEGER*21A-Z)
DIMENSION TPL(104)
N4=N+4
DO 10 1=5,N4

10 TP1(1)=-TP I(I
1=1
DO 30 J=5,N4
IF(TPI(JI 15,15,30

15 A=TPIIJI
DO 20 K=JN4
IFITPIIK).EO.A) TPI(IK)I

20 CONTINUE
1=1+1

30 CONTINIJE
TPI(4)=I-l
RETURN
END

FIG, 6.6

SIROTIIrE NOrBIZ

SURROIITlINE EOUAL )N,PPMTPI,PP.LtE,PPE(P)
IMPLICI T INTEGERM2)A-Z)
DIMENSION TPII1D4 ),PPi50)0)
N4=N+4
DO 20 I=N4,PPM,.N4
I)1 10 J=4,N4
IFITPIIJI. NE.PPII -N-4+ J) CIll l) 20

o10 CONTINUE
LEO=1
PPEO= I

Gll Tll 30
20 CNITINUIE

LEO=0
30 REFUIRN

EN)

VEQUALX[0]V

V LQUALX
[1] LEQ-( IPL)2PPEQ+(PP[ :4+,]^.=TP)1) 1

?

FIG. 6,7
SIIBROIITINE EQUAL

VLESS[1]V

v Y+X LESS Z;K;M
[1 ZT+Z-)i
[2] XT X--D
[3] K-l
[4] LESSlOA :f-K
[5] LESS1lO:-(l (PP[XTtK]=PP[XTt+] )^PP[ZT+t']*PP[ ZT+!] )/LESS20
[6] (M 1tM+l) )/ LESSIOB
[7] *(;-Ktl +)/ILESSlOA
[8] Y-IC9l y.o
[9) -O
[lo] LES320:Y-0

V

VLESSIl33]V

V rYX LESS1 Z;K
[1)] 1T+Z-1
[2] XT+X1 -
[3] K-i
[4] LESSlOA:-(v/(PP[XT+K]=PPt l+XTt+KE+t l-K])^PP[ZT+K]PPF[

1+ZTitN +l-;K])/LESS20
[5s] -(L;,. ,-t )/LEISlOA
[6.) -

[8] LESS20:Y-O
V

VLESSX[,]V

V YXI LESSX Z
[1] Y'v/v/( PP[X;44tN] =PP[X; 4t4N])APP[ Z; 4+t, PP[Z: 4+ NJ

FIG. 6,8
SUBROUTINE LESS

(40)

I. '(;IlAL -I [NC IIN lI.N SS S . I. ,Pp I

IMPLICI 1 INI I-; R t' A-? )
I1 MiENS {IN PPI ,0IO) 
I 1=1 -N
J F=J-N
IU) ) KtI ,N

I)1 10 M@K.N
IF(PP(Jl K I .EiP. JP ITTMINII).PP(1.1 K I NF. P I 11 I ;(. II , :,,I

10 CLINTINilE
LESS=. IUI.
RE T1URN

20 LFSS=.FALSF.
RE llRN
EN,)



6.2 Results for Time and Space

FORTRAN

CPUTIME (seconds) Compiler

G H(Opt=O) H(Opt=l)

COMPILE 36.89 30.55 43.10

Link Edit 4.25 4.49 3.77

GO 2.75 2.77 2.49

Total Scheduler 4.67 4.92 4.69

Total 48.56 42.73 54.05

Storage (bytes)

MAIN 38,846 38,416 37,034

SUM 676 646 534

REDUCE 842 790 596

NORVZ 578 558 454

EQUAL 572 516 450

LESS 660 508 426

TOTAL 62,576 61,832 59,896

APL

Programs

CPUTIME (seconds) ZERO FIRST XXXX SP (GHF)

Execution 592.4 508.4 85.3, 62.6

Storage (bytes)

Before Execution 12360 9324 7564 5116

largest during execution 14884 11556 9448 7680

After Execution 13748 10712 8716 5628

Clearly there is a trade off in time and space between the

two modes of operation. If one were to compute the product of

space and time using the maximum space in APL and the Link Edit,

GO and Schedule time, but not the Compile tinme in FORTRAN, we

have (in byte seconds):

(41)



FORTRAN: G H(Opt-0) H(Opt-l)

730,262 753,114 655,861

APL: ZERO FIRST XXXX SP

8,817,282 5,879,693 805,914 480,716

Independent of any value judgements as to what these figures

may or may not mean, one lesson which is clear is that if any

value is to be gained in the use of APL it will require

programming in a style which is suited for APL and not directly

following the programming style found in a FORTRAN program. This

can either be done by a re-analysis of the algorithm implementation

or by an iterative improvement scheme. In either case computational

efficiency can only be gained by using program constructs which

are not readily obvious in the FORTRAN-like program.

Re-examination of the critical subroutines in Figs. 6.9 - 6.12

indicates that when translating from ZERO to FIRST there are

instances when the second subroutine runs slower than the original

although the averages of the ensemble are less.

The stratification of times, particularly relating to group

XXXX, denotes that time in execution for the subroutine in

question occurs in quanta. These are predictable from examination

of the coding.

7.0 THE FAST FOURIER TRANSFORM

The Fourier transform has always been of interest to the

scientific community, but the computational efficiencies found in

those procedures termed the Fast Fourier Transform (FFT) have

recently allowed the Fourier Transform to emerge as an effective

problem solving tool [13,14]. Further, the array structure of

the procedure appears to lend itself to an APL implementation for

interactive use.

A FORTRAN H program was written, essentially by translating

(42)



................ ' ]( ............ ....... ................ -. I- .i-:::i:I..................... i
....... :7: -T- ..........-r .... . .

Ili-~~~~~~~~:·- : !.i..:-...........: :i~ I ........ .·

i i-t I I:1 :~~~~~~~~ ......::1 ,:: '::r ...
'--:-'-r -..-.:7:: r-"'-r-:'.--.-:-:':::-:: :..': n-:'::--"-~... - '' .::. .: 7-.-:

::] .....,:~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~::,:,:,: .. , ~:I:~: ~ :! !x:~ ' ~
___L~~__~:l._ :I·-' 1 : i .-' I-:~:- ,.... ::- :: !:I.:: :~:::::"

-'4.' · .- .

~~~i - ."~.i. . : .. . .: 

~-----------i i:.-.t--ii.-- I...- -L-.f~- ' ~ _1f~ ?-'-7['~-'T 7""°

-

"ii'; i . .. T .~7' .T~ ir ': I :....,'~~~~~~ t· .- -- :''. ! t.~ ''.- "'. i . . . : :; .

..I I.ij: : I r : : : i .. .-7 ·::.- ::-: ,: ['~ '7 i.-:---:-:i::?m-:'~-.--::"--:~ - ~ ~ ~ ~ ~:: %-1: - : ~:' :"~':- .- '~:q :
+ .:.--' : :: I:..: :-::r:- ?-:~ .' T-c-':' ... :7.

: CPUTIMES (60ths o f a econd) :._:_:
- I .: .. j..ii~~l~iL~I/I................. ::tl:'t '

; ~~~~..-: :t. .. ·.......,.

CPUTIMES REDUCE.1[CPUTIME~S REDUCE],.; CPUTIMES REDUCE ' CP.IT..ES REDUCE]': .

~- : . ' ' ' :.: .: :-'-.77" I' I"..u .-. '. :::,: '' .

t", ·i ~1' I. -i---~ i .~i CPUTIMES Rd~DUCE] X: ,PUINE RD: :.: .. ':':-{:>:'.' i .-" .1:::~ -':"-::' i'I :" i: :i : i-'::
· · 't - - - : · : · . . i: · ' ' 7: ' ' : ' ' ' '~~~~~7- -7- T1

l: : : ~'.I1 L.'.:1. ., --:-:,- , ' , ~ l ,__~ i.-.',' ..i..
~--~ ,-:':-,:-:.:'~':::',: : - -. : : :::: ::t:':.: : -",:.:~: ~V"?.-!.~V_~-:':-.,: i ; ··:::: ·Il__i ~ ~ : ... i·:- I --- ·-- l. -i

-j~~~~~·
-l::'i-7--i:"": '."': ' [7 :'-:- ' - -:,.; " :": i.l. . . . 7:l: ::'~::" '':'. "F:...:- t ... , :· .: i::: ._:.~ ~ ~ ~ .·._..._._ll : . .i il.:_ .'1-:iii ._....:...

7:.:... .
~~rii---ii~-50 · i . ! [i i;llj--i-_l~~~~i~~~l~~~_i~~~_lli_~~~~~~~].l~~ ._. .. i , , : , ' ': ..: ' ·

.!- "7 : : I :lt: .'. '':.":" ;'.!:.:I .~' ... I -··

: 1 ._:.11--1·:·~~~~~~~~~~~~~~~~~~~--;- - --- ;----- :i~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~.;,-.~_

:~~~~~~~~~~~~~~~~~~~~ t ' -
~~~ JA~~~~'::

Ii~~~~~~~ ' -:: :'i .- :' ::-~- ::1 .:'! · ". C:~: !' ': '/ ' 

:::: :1~ , : , : :: , ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

t30.:. ~:: :::, : :k:::::: :VERAGES .

I:-:i: 3o-'---.- --- '~-._-.:-:-'--·-:-' i ·- f: -'-i - ~::'.-:.?r-~-.- -:-~'/I ...... ~' -:~._...

'::~ :! ' : . :: ::: : .":: 443.4-- '': ':~~ ~ -'

... :~ ·L:... t ...... tl~ili~iitliiliii-- ........ ...... 4 ........1
i~~~~~~~

I 27.8
.: ..... ..... .. .. .......

77~~~~~~. :.. ..-.:.:'-';:::-..? :::_...:!;:!::'..''::~~~~~~~~-:;:-:i. :]. ' : .i::1 I·: ::" ':;: : I::;: ' :. :... '::,1;:- I·::·. ·
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. .. LJ L-''_::.....''._ ' :.; ;...........4 .... .' '"' " Z''? -. J7. ... : :

,~.-~"--'::-:-.3..-
.

~Vl:,ts~'&~.o~~~~--·~ ' "-~~'~ ~-:~~~ , ---I F ; ,-T-

~~~~~~~....... -.47 ...
I -:-· i:::~ :-,i ·-1 , .t ... : ....... .. .......... :,_:.:::I . ~::.1:..!:.-! : ..... . . . . ' ............

:7 1 : ...... 4 3 .. ..............

:::~ ~J....:::- : . . . ...... '........::I":...
~~~~~~~~~~~~~~~~~~~~~~~~~~i:i.i~ii:::,: :.:: i ... ,.. ,::. i_:=-t: .......:--.,- = :-::-' ''.- ::-- _j......

t
...I'::·: ' i i i i i:-t

-- 7; ~~~7-7 7 -7-

iii~~~~~~~~~~~1 I. 6.':

.:J · [: ' ' :': :7;.~I. L : ;': j Ij[':= : :L::L' L2Z ; L''L: I ~L ..

l"~~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~I~~-l i:..:.qxt!!: :1. "-::i: ":--i-i :£' ::. · '~-__ ::- .I: ::L:': :':::!~E :::::'::;.~.$~~t-.--- -~:J:%: -2:':-,L.Z:L'
..... -JO0 t--~~ ----- rTT--~'?Z'-'T..-~.'Z -. 7--~-I.:.:.[T..........T

-- ~---7~~~~~~~~~~~ .7 7-?~T -~ '.... ·........

, : I,: : : 7.:::. '

(43) i

7 . i 90

-77

....;.:

7 i7- 12 0 ~1

-i0o

7.

f Ii.._lg

-~^120
L

hO

L-: 100-.

T ·· 8o

:77F7q ---TT_

-3o

'::::~~~~~~~~~~~~~~fl :':".:: :::~~~~:: :~: =..
.., . ;:-,IT

I!~~~~~~~~~~~~~~~~~~~~~~~7

-.. .:. .;' ;:
I

1:.::'," ·. I..:.,:: .. " : : ' :' -;]:::,:,:_[: !: !bi.!!::::.:i:,:: .:'.. -~:

iCPUTIME (60ths Of a second)':!:. :_..ii:':iii! ;.

[... -=:i::" ':: ::l

.~. :' .: :'.':- i.. :./:::z:-l.' I :'' "~ '·! '~ .. ·

-1r : . i· i~~~~~: :' : ::.:. - ." :...1.1_...'

... ' 'I::.-T'i:-i: 'i-~: i:': :': i- ; :{:.

-7~ ~ ~ ~_1.~:i--:--I' -::'--- " :- '

.' j · .- : i 7~:1t':::

:- ~ ~ ~ ~ ~ ~~ ~~~_. i i ::-.:"-."': ;:,':' 1·::-".'.'~::''",,',-
'

~... :i::_i
:.i : 't:'':t:i -:: : : :: !_/--'-
:::~ ~ -:_-. -::...- i--'....--' ':--: " ': :- : : -,'

~ij -.- 7

-'lli-~ _"

l 7.....

7': : :. 7 -

'
± "-'-:-i - .:

..=..<L : :.' . - . :..,..:'::L:!.-

ow~~~,

7....... I :- :-: :. : : .i:
q ~~~~~~~~~~~"I.i,:.: :,:'

-: :-7 :"-: j /-*i.....::

'::: '

177- - i7
::j i I

.. I: 1...... . . 1 1 ':I==I':-': '=- :' : :

: : ~~~~i:-' _'-' - "J -' t- o' -'=:=i.-==='= '.l~:::...'=":-
.:: .': '~~~~~~~~~~~~~~~~~~~~~~~~~~~~

iiii7i

:..1

I77, 1:!

:7: I:7 ~l~:.L1I ... i.. -,. -. :: -t t .: =:., , :

: I. CPUTIMES SUM [CPUTIMES SUM]

. cPUTIEs SUM 1 [' CPUTIMES SUM]

I. CPUTIMES SUMX [$ CPUTIMES SUM]

71 : K-i 1 . . . II i L uJi
.....=: E

.i!:'L!.!

rt1 ~~~~~~~~~~~w1:
4~~~~~~~~~~~ I I

I~wi ...

'-:~- i

t

...i~_..

52. " :! =i=: 'i-;

22.3

41'

[:_=::

-7 1 -.7 - 1

: : .. . : i

i223 i i

--iiii-

T :i :..I Il f , :I 7:

w--

i: ' : ; I-- - ...!
':t:: .. ':..

K7 I 7 .j

'.- : . ' :. : 7.

-- nt 1

7.: ;: : .

.7K

=-:{~-=.

...=

: :..:;::::: ::.: 1iiid:'.itiiIi
:-... -.~.-- '- r- I- ----- i 7·LE :..........: :'Y -' :- " ' L.' TI -[j

!....t :.'::
-- i i

.1

.... I---

. ._:ic

1. .!

. . 1. 1
=-: '

111 iiii..1:1I. . . .i- i:!ti:.L: I.:!::--[: +: 1 .
" ' ' - : .-

77~-_7 t: ,77-T= : .r

Ii h 7 :i : .: :ii
.7r':'t:::: .' : i :- .:

: ·.1. .

r:-77

I f l y I

-i- I - - -- ~---s--·:-·

1~T:_ f I~;t 1Th71j~/i;ii ii/ Jj:

1.2
'=='' i '-: : i.....

~:- i ='==.:1I : :f- · j ::-.

=:::=::':"'::::-::::.:':::':::

!: L I: ..1i': l L
: 111 1 1

:-:'::I::::
-r''''

I :,: ' : - ' ...17 : p ~~~~~''..
: :~~~~~~ .:

--Hi MOMENTS DURING PROGRAMf REARRANGED
':4': FIG. 6.10 :7

i -.-.'-I.I ii SUBROUTINE SUMI

(44)

i I -' :::ii I :I i I I i

iiii ~l,,, liii :: : ::;i:: ':i T : . .i

-t - I -I !..-i .. . - -7 - . .1 1 _ _P ; ' i.. 4 __ !-- -f-7 1 = 1

I. I I I: I ; .i- ,-i .
i~~~~~· -I-.II

I--

II

=:-' +..!j1;
t
F . , -i C i L ~: : ::.. . i i i

dTF7l-77.+-.-Ti.__'I" ! :+,-''F-:
�::: 1:: -�

7F

:2.[::i L...-j:K+T........ .. [.- i:.:...:.....
:' ": '"'--'" '/-" : -i-: " :t;::'- : :i ;. .,: .i L.' .!.: ':!- :'~;;_ Ii :.-:i -. -

*_-,_,__?'¥ .,,. ,. ::_',! ,,.:.:

.

.. -i ' i_ ..:.. ,, -.:. : /::- -.

-_: CPUTTIMES (60ths of a second) -

..... ... -7
=.::'. :-:'l:.:: 1 : -%:i

;

..;
::

7

-
T F -!

,--:t::.:.: :: :'., ' := r: ' ':1 !-::: -: ' I -:': :- l
t: : :|::'[.-: :: ' ;- . | I :-::

:. - !, -i -, ! --i: 1.. ,.:.:~::.[::~ ' ;,. : .:-i-:: ::l:.::l I ..¢ / ::t '::l , : .- .+ -

:T : iii . CPUTIES NORSIZ [CPUTIMES NORSIZ]

.-- v - ' ' - -:- '

:i ':-!.: / - ; l_:_i :::.-I :_ :--: i.: CPUTINES NORSIZ 1 [, CPUTIMES NORSIZ].j.
]-: ' I ' :l : ' · .: -. j.~"' .:-i .' -' i . ! .- . ::l

:..:.: : .! :-5c -... ,. , , , iw 2i .:, .,:: I, : -, .I, -. - -- I ,; . I 5 :| : i j .'j I 1|

,-.*.,I.:. '.1---:1-'.,- :1:" C ii-j :.IL: ! I' :l:ii CPUTIMES NORSIZ X ' sl:I!_i_~ -: ::;. I :r = : . ..i. I.. --: ----_--/-;-. ', .. :. 1 1 -: : :-: l .

!~;~(.W -_.1- .- ~:- L.. . .-: ' :..-=-_ _' AVERAGES: . .t.-l-.: . -- I
· .' ':' : 7 , . ~ .--. , } . ·* - ! .- j:- .- ... :': "'":'i:':: ' : " - i ..

... | 5 t ': .. : -- 1 j;, 2 .69

..... MO.ENTS DURING PROGR.: ! - : i_.~- ~ .. R aRR :GED - j i +-
. : 7: ' o I i

·-::.. .; : : 1:.-:: :': : - ,:::: . T I:::: i -::: l:: ::

.-1 --.- ,.-.-. |- -, ..-.:i: ', -7t--X --i

.................... : _ --- :-i-.,::-i' -.... ::l I --j--

J ~~ii:= i:_: i_ 4: ,: ,,:: ,=;:4-[- L A J .

.............._:.:.= =_== ' =...Z=.-='L~:_1=.:'= '='; '= " .=.......-J,.:

''' 1- I i- -tI
: : ' :: "_'- - - :-

':-:ii'. -:: ':: !--: 1,::._:-i/:j o !-CPUTIMES EQUAL [4 CPUTIMES EQUAL]

-.. : : : : CPUTIMES EQUAL . E'. Q iX
.- ,7:.. 7 w -I--.

::i: : . ". 'i": i : A!V.ERA.GE .:- -:. --- : *CP 6E.8

-- ._ j- FIG. 6-ti- 1: 1- _-w=-ta'--: 25.3.-- .. ,: . . I ...-::::: L:ii--1TE:X...F':-'if:.::,..

--- :'|:-~i- !:: - OMD ENTS DURING PRO'GRA-H RE~l'RANGED "=~: ::i:'i i![' ii[Ii i-"i J! :li iii'li ii i i. -~

. -: ~-F|. "H - :"-I-t--::::'~. SUBROUTINES NORIZ & EQUAL t 1?::.:::::
(45)

I

~
~

~
L

J
-J

....
I

..

77
....

7E
-'

E

.............-
.

....
7I

7
1

1
+

1
1

..........

[]?.
K

........

7>":
*:

'!
-' '

'.i:::::
I

7
44

·
--

~
'

[
-

:' I
-

-i
~ ~~~~. .J ..

!
.....

..
I

"
....

:
;....~

.....

':
:

-
"

:.'-;.:'
.'. ~.

.

I;:
I:

I
:::: I::::1

:::-:
1
:::: i'::: I::::111~

:!::::
::t

L
 + _ , L

 :.
.

.
.

.
.

.
.

_ ,l _ _:.
......

~ _ _
....-

7....7
~~~~~~~~~~~~~~~~~~~........~ 

....

i i : ij]Ii 
i,_ijji-,~ii- 

i:~irI 
I 

itii~ : ;i1i~~

.... 
7,' i: 

-
' 

1 
h........... 

7
.I

'*
'

w
w

 
-7

.1
=

 
-7 .

7=
i- 

I_
- 

~

:'~
I': 

.
:.., 

: 
.

:-.:...: :-:,.' 
:' :::. .',:":.1 

:.' 
..

' 
'':::::

I 
.~

... 
.... 

.. 
..

7 
r..... 

.
...... 

........ 
.. 

.
.... 
...

: 
...

j 
,4I..... 
........... 

.... 
il 

1 
.. .... 

7- 
I- 

.

'i 
t: .

iT
 

(2
- 

::: 
[' 

! 
:::' 

:;'::

:. 
7 

::"
l 

.
:'i 

' 
' 

;.': 
::;:L

.: 
· 

.
: :

.-- ! 
.... 

1 
' -

-1 ' 
.. 

'*
.... 

.... -
'7

 
..

.... 
~ 

C) 
oO 

I 
J 

j 
.... 

.... .
.

[~ ~ 
.

rf_ 
i- 

O
- 

.
~ 

.....
l 

_.: 
.: 

.... 
.,7ii] 

^
.- 

f:..,...:...

~ ~i -i-i 
---

:'--C
---~

~
~

~
~

~
~

~
~

~
-r---·-; 

·--S-7 
7.

7
7
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
 

..
~r- 

,. 
~

.:.

F
.. 

v
-
 

....... 
.. 

~
-',' 

:' 
: 

: 
!'.- 

-

'I 
::: 

:::' 
' 

,:: 

:--?
:--~

~
~

~
~

~
~

~
~

~
~

~
 

~ 
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

 
j 

F
·:::I 

L

::: 
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
i.:: 

.-
:l::.;:I:' 

~ 
..- ._.~.....~

, 
... 
.

.
.

.... 
I 

.....
: : 

i : 
..

"
"
 

: 
"'J 

' 
'7

' 
' 

'

IC
 

I 
.I 

.. 
.....

1· 
":'. 

:' 
i: 

. F
 

: 

, 
'q 

42.fL
xO

'1
4
:0

"
' :-- 

I....'......'r'- 
F... 

.. 
I 

.
-

..- 
) 

.- 
'1-'- 

l--- ,' '-!"

I 
'I J ' 

:...' 
' 

.
.

.
.

I 
'i 

: 
t

IF
~

~
~

~
~

~
~

~
~

~
~

~
-

;:r~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
-

P
.7 

i.
'-4

I 
f::~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

 
F

'- 
4 .......

1
IIZ

'~~~~~~~~~~~~~~~~~~~~...:':.-i.:r.E
.: 

... 
.:...: .

4 
I 

F
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

4

I 
.. ..: 

: 
...........

:4 
4
I 

.... 
.. 

.. 
.... 

......
F

-:7fi, A: :~:-: 
:7' 

7 
7~~~~~~1- 

.
77it 

· 
j 

I--

' 
.- : 

'' 
...

:: 
:: 

.. 
.. 

.
: 

-
i:- 

.
: .i: : 

? : 
::-.. 

I 
j' 

L
m

 I 
77 

77i:-.,

--;~~~~~..:..i- 
i I :Ijlill~~~~~~~~~~~~~~L

L
-~ 

i~~~~~~~~~~~~~~~: 
::i.'J

:!:''.: 
' 

.
....

::: 
': 

*.~~~~~~~~~~~I~... 
._._.~....i:

+
:]L

... 
J 

· 
' 

': 
-O

 
' 

:'. 
:: 

-:':T
 

: 
: 

: 
: 

::: 
:".1 

-
~

"
 

: 
' 

7
7
--i~

~
~

~

4! 
-46-.:...+

.. 
6 

' 
............

.-1..... 
.................. 

......... 
( :.......... 

..;... 
....t ..............

/: .
-

;~
 £

L
:· 

j';iil-; :ii. 
:i ii :it'i:i~

L
 

ili.-iiij1j:Z
 

-. 11.1-i~....-.- 
........ 

........
~i.~. Li.:.:I~iii':j'~ 

)iiiL/i"~jif~ ; .. u
'Z

l"
i-iii.~



--R.C. Singleton's formulation of the FFT, Algorithm 338 of the

Collected Algorithms of the CACM [15], from ALGOL to FORTRAN.

This algorithm is based on Singleton's approach to implementing

the original Cooley-Tukey algorithm and the background material

is contained in [14].

The six procedures, COMPLEXTRANSFORM, REALTRANSFORM, FFT2,

REVFFT2, REORDER and REALTRAN were coded in addition to a main

program which was used to read the input from data cards and then

call COMPLEXTRANSFORM or REALTRANSFORM as appropriate. Following

the observation made earlier in this report regarding coding in

FORTRAN, double precision arithmetic was used throughout. For

the actual tests to be described shortly only the MAIN program

and the subroutines corresponding to the procedures for

COMPLEXTRANSFORM, FFT2 and REORDER were compiled and used.

The equivalent APL function FFT was a modified version of

an algorithm given by A.L. Jones, IBM, Endicott, N.Y. in the

APL Quote-Quad [16]. The algorithm was modified to exploit

improvements in APL\360 , the IBM Program Product since Jones'

algorithm was distributed. (He has since distributed an improved

version.) The variant also provided both forward and inverse

transforms and a scaling in both directions.

In each of the cases run, for both FORTRAN and APL, the

forward transform and the inverse were calculated, invoking two

calls to COMPLEX TRANSFORM. This was done to provide a check in

returning to the original data. In the cited results both the

FORTRAN and APL results agree to 10 significant places.

The use of FFT, in both environments, requires 2*N data for

some N. Due to storage of temporaries and calculating with

reals (long or 8 byte representation for floating point operations),

APL is restricted to those cases where N ' 8 for workspace

sizes of 36 K. This limitation comes from the dynamic data size

and while the restriction of size is much less than the number of

(47)



points normally used for the FFT, where N is usually in the

range of 12 or so, the time and space trade offs may be seen.

7.1 Tests and Results for the FFT

The tests used data of the form

V Z + CRT N;T

[1] Z + ((2*N)p (T pl), (T*2*N- ')pO), [0.5]0

V

In general, the actual data has no real significance for the tests

at hand; rather, the size of the problem is governed by N

because (2*N) = 1 + pCRT A', The significance of the FFT is

that the time, or number of calculations is proportional to

N x '2*N for 2*N data points. The time to execute

1 FFT 1 FFT CRT N , or its FORTRAN equivalent, for N + *6

is summarized by:

(times in 60th's of a second)

N APL

39.4

62.6

96.4

149.2

255.4;

489.6

The

-1sizes a
sizes a

Compile, Load, Go

3154

3143

3172

3190

3211

3268

are (in bytes):

APL

FORTRAN

EXECUTION

36

42

54

68

88

141

FORTRAN

LOAD MODULE

528 4752* 30,584**

* Includes 484 bytes of MAIN program to read input.

** Includes 4124 bytes of static COMMON to pass data to subroutines

and 12 FORTRAN subroutines, such as IHCEFIOS* for I/O (21,708

bytes).

(48)

1

2

3

4

5

6



In FORTRAN the average time for all runs, for compilation,

Link editing, and scheduling was 2466.3 60ths of a second.

Comparing only the size of the programs the ratio is 528 bytes

for APL to 4502 bytes for FORTRAN or 1 to 8.5. When the APL

function is compared to the FORTRAN load module, the ratio is then

528 to 30,336 or 1 to 57. Carrying this comparison to one of

total space we must compare the work space size, 36 K, to that

needed for compile, load and execution, 160 K, giving a ratio of

1 to 4.44. If we take into the calculation the size of the

interpreter, then (if a 1 workspace system would be a possibility)

the ratios would be 124 K (88+36) to 160 K or 1 to 1.21. Placing

relevance on any one of these ratios, (or other suggested

comparisons, for that matter), is not a straightforward task.

Comparing the direct program sizes does not measure the space

dynamically allocated for data and for temporaries created during

execution of the APL function. At the same time, part of the

FORTRAN code is contained in the run time package, and yet an

attempt to compare the APL function size to the FORTRAN program

with the run time package overlooks the fact that APL 's

structure requires the workspace and a great deal of an APL

function's support is in the interpreter. Including the size of

the interpreter in the calculation does not take into account the

fact that the interpreter may be shared whereas run time

packages generally are not. On the other side of the coin, the

space used in the compile/execute cycle may be overlayed whereas

the interpretive execution requires more nearly complete residency

when attempting to use APL in a batch fashion.

The times of execution for the FFT would be expected to grow

with 'N x 2*N for 2*N points, and the FORTRAN times when

plotted on a semi-log scale have an almost linear relationship

with N . The APL times are somewhat slower and show a growth

greater than linear and approaching quadratic when plotted on the

(49)



same scale as the FORTRAN data. It is interesting to note that

nowhere are the APL execution times comparable with the FORTRAN

execution times, but over most of the range of N considered here

the APL times are less than the FORTRAN scheduler times.

8.0 A NASA APPLICATION PROGRAM

In order to get some measure of utility in the application of

interpretive techniques it was imperative to study one or more

application programs typical of those encountered by scientists

and engineers at Goddard Space Flight Center. The program

supplied us by NASA Goddard was one written by M. Javid [17]

when he was a visiting scientist at Goddard. The program,

hereafter called the NASA Radiation Pattern Program, takes the

geometry of a dish antenna, excited by an arbitrary primary feed,

and calculates the resulting field at specified angular increments

for Theta and Phi in a spherical coordinate system.

This particular program is of interest because in addition to

being typical of the work of scientists and engineers, Javid

developed the radiation pattern in APL and then from that a

FORTRAN version was programmed for actually running the program.

The effective use of APL in this fashion is reported by Javid

in The Use of APL at Goddard Space Flight Center (C.J. Creveling

Ed.) [18]. This type of use of APL only partially relates to

the third category of use of APL which has been mentioned on

page 2 of this report. Even though no compiler currently exists

for APL, success has been found by usingAPL for algorithmic

development with subsequent reprogramming in another language;

see Kolsky [19] for another instance of this technique.

We were provided with a Xerox copy of a listing of the

FORTRAN program along with the report [17], a Xerox copy of

the APL functions, and the collection of papers edited by

Creveling [18]. From this collection of material inferences

(50)



about this kind of program were to be drawn.

8.1 Program Characteristics and Programming Problems

The first task was to get Javid's FORTRAN H program -running

at Syracuse University. Unfortunately, a running program deck was

not available and the quality of reproduction of the copy was lacking

due to either lack of contrast or break-up in reproduction of the

characters. Much time, both by man and computer, was spent

removing errors of punching and program misinterpretation.

Eventually success was achieved for the FORTRAN program and the

availability of the original APL version and the descriptive

material were invaluable in accomplishing this.

The program may be characterized by having a small amount of

input data: the number of increments for Theta and Phi; the

diameter of the reflector, which has rotational symmetry; the

focal length; and the wave length. The nature of the geometry,

and that of the primary feed, is implicit in the program. The

APL function coded by Javid deals only with parabolic

antennas, and we restricted ourselves to duplicating these cases.

It must be noted that if the-flexibility is achieved by

alternate coding, then additional effort in tailoring the

program to the requirements of the problem must be made on a case

by case basis.

The intermediate calculations are performed in a Cartesian

coordinate system rather than one of spherical coordinates. In

order to calculate the field at an arbitrary point, the

circular antenna is divided into annular rings, the number of

which is a function of the dish size and the wavelength. Each

ring is divided into a number of segments such that each segment

has approximately the same area as any other segment in other

rings. An approximation of the field contribution of each

segment is computed and then all of the contributions of the

(51)



segments are summed to provide, by superposition, an approximation,

to the limiting case of arbitrarily small segments,of the surface

integral.

The field is calculated at each of the (Number of Theta

increments) x (Number of Phi increments) points by a doubly

nested looping procedure. After normalization there is a

translation from cartesian coordinates to a spherical system to

give the radiation pattern.

8.2 Recast-ti, The Original APL Program

Javid's original collection of functions were written at a

time before the circular functions were added as APL primitives.

Thus, an obvious step was to delete the APL code for the functions

SIN X and COSX use loX and 20X respectively in the body.

This minor change is reflected in Figure 8.1.

Lines 125 and 128 of BEAM have an error in them. Lines

124 to 129 are used to translate from cartesian to spherical

coordinates and for both the real and imaginary components in the

Theta direction

, i ' cos 0 cos 0 Ir, i + cos e sin e Ir' i
x y z

and not

Iri cos e cos 0 I
r
i + cos s cos 0 I r' i sin e Ir, .i

8 x -~ y z

as shown in lines 125 and 128. Even with the corrections an

examination of the ancillary functions

HXR, HXI, HYR, HYI, HZR, HZI, which are used to calculate

the Real and Imaginary components of the source field, H

the X, Y, and Z directions based on the A, ye, and z values

(of course these depend on r, 0, and 0) points to other changes.

These functions have a large dependence upon the use of global

variables with little use (in HXR, HXI, HZR, HZI) of the

arguments, and this and other considerations suggest treating a

(52)



V'EEAIVL U J V
V REL-S+-AR BEAN AIR2

L1 DIA+30
[L2 LNDA- 0.425
L 3 J DFID+3
L[4] DTAD+3
L5] "'FPI+2x3.141592654
[6] DRli+TlI360
L 7 J DFl+Di'ID x DR

L 8 ] DiTAd-iJ 'Ai xDRX
L 9 ] I+TPI . LiIDA
L10] DRZl-U+S+LiLDA 4.731666667
11]J Ri-Lc(DI:-2)*-
[12] M'+999
L13J] RI+(i'+2)jp0
l14] NSU/i+-(i-+2)pO
L15] J+c
L16] I-0
L17] B13:I+I+1
L13] SUii. i+
L19] B12 :J-J+1

[20] -( J> R ) p 310
L21] DSUI*-6 xJ
L22] 2 -(DSUi>.'.i) pL'14
L 23 ] SUi- I+SUi1+DSU;
[24] (SU;I>i,;)pi 11
L25] -+B12
L26J B11:iiILI+1 +J-1
[27 iJSU[li 1 + 1+-SU'i.- SUi'
L28] J-J-1
L29] -b'13
L30] t14: 'STORAGE IS Ii'SUFFICIL' T Fi'Ci' TIlE FOLLOWiJG RIiGC:'
L311 J
[32] RILI+1]+J-1
L231 HiSU [l + 1 ]SU M

L34] I+I+l
L35 J +'15
L36] i10: :L'ZID OF REFLECTOR SlECIFICATIO;'
L37] ifI[I+1+-J-1
l38 ] fiSUN[I+i ]+SUiM
L39] I+I+l
L40] '1 5:LIiR+I
L41 'TOTAL UIU;D'£L'R OF LEL1Ei;'i.'TiR Y AREAh' COi'TRIBUTI;G TO TilIS COii''UTA TI

Oi,' IS: '
L42J +SUMDS+-+/1iSUil
L43] i.ITX+(9,((ARIl+1)xAR2+1),LIR-1)pO 9
L44] VX+l.lpl
L45] VY+i.ipl
L46 ] VZe lpl 
[ 47 ] ViX-+Mp 1
L48J VIIY+iMpl
[49] ViZ+I1ip1
L 50 ] VDS+Iip 1

L 52] Vh'XI+Iip 1
[ 53] VilYl +l-p 1 
[ 54 J VilYI+l.ip 1

L 55 ] VfiZk+-lp 1a -
L 56 J VilZI+Mlip 1
L57 IHR+O
[58] 316:Ii+IR1+ l

FIG 8.1

BEAM (ORIGINAL)

(53)



L121] I'ZRiIZR+( (AZRxC;KD )-AZIxSiKD)x VD[LI]
L122 IZI+IZI+((A (AZRxSD D) +AZIxCKD) x VDS[I]
L123] -+7
[124]Ji3:CRR+(S2'AXCFIxIXR)t(STAxSFIxIYR)tCTAxIZRi

L12 5] CR-(CTAxC7IxIXR )+(CTAxCFIxIYIi )-T rAxIZR
126] Cl'S -(-SFI x IXR(IX) (CFi'IxY R) SC e .xS"2
L127] CiI+-(S'AxCFIxIXI)+(STAxStIxIYI)+u-AxIZI
[128] Cfl'I+(CTilxCFIxIXI)+(CT'AxCFIxIYI)-STAxIZI
L1229] 7I+(-S FIxxIX I)+C FIxIYI S6 . s2 2.
L130]j AR'2V-(CRII*2)+C'I*2 2
L131] AT2V+(CTR*2)+CTI*2
L132] AF2V (CFR*2)+F 2I*2
L133] IM'TXL ;FPii C;Ii C]RRiT,CTR,G'FR,CRI,CT'I,CFI,ARt2V,AT2V, AF2V
L134] Ai/'2V
L135] bu-39
[136]Jb4 :+1 6

V.'li, LL] V
V Ai;+SIi. T

li 1 ] Ai,"- 1T0
V

VCUa'LdJV
V A-+COS T

L 1 A/i;'2- 2
V

VD SL ]V
V i)SI'-X DS Y

[1] DSi'tIx( ( (i((O+0. 5xS)*2)-(l . 5xS)*2)-(.5xS)*2)2xU
v

VZ l'LL' IV
v Z-X' I Y

L1] r'+36
L2] l2i2+(X*2)+Y*2
L 3 J Z+(ilfu2. (4xF) ) -Fi

V

V iXii'L L I 
V tiXil+ZX iXR Y

L 1 iXAI'i-0+O
V

VilAI L Lj V
V iiXiI+-X IiXI Y

[ 1 ] iiXII+'O
V

L 1 
L2 
L3J
L [4
L 5 J
L[]
[7]

V.'li, L L I V
V ilYiI+X iiiYR Y

R2+(X*2 )(Y*2)+Z*2
il 1 +i2*0 . 5
Krz+,.xh 1

SKi;vcii xik'
cKRh'COS KR
SiR2+Z I' 2
HiYRI+-SR2 xCKii

V

V ZiYIL L ] V
V iYII+X ilYi Y

L 1 ] YiiII+Zi 2 x Si,
V

VilZRLJ]V
V 11ZI+-X ,IZR Y

L I YA2+-YlR2
L 2 ii ZlI Yli 2 x Cidi'

V

ViZI L J V
V h'ZII+X iiZI Y

[1 ] iiZII+YiV2 x 'KL
V

V I'X Z L[ J V
V ViiXZ4-X' ZiXZ Y

l] klA+( (A*2)+Y*2)+Z*2)*O.5
L 2 Vli"XZ+X-(Z-1)

V

V Vi, Yz-X NYZ Y
L1] Rl+( (X*2)+(Y*2)+Z*2)*0.5
L 2 ] ViiYZ+i'(Z- zR 1 )

V
VIvZZLu]V

V ViNZZ+-X iZZ Y
1] VI;ZZ+-1

V

(continued)

(ORIGINAL)

(54)

FIG 8.1

BEAM



L59] +(IR=LIRi)pO
L60o FPi:O+-O
L 61 Ti-ZiSUA[L I +1 
L62] IEiND+-O
L63] I-1
[64] d--1
[ 65 B 1:J-J+1
l66] +(d=(RILIR+1i-RI[IR]) )pB3
[67 Jil+-RI[il ]+J+0.5
L 68 J RNiOCSxJll
L69] i6I-1
L 70 J L'iEiDO-IEND
[71] iiUi- GxJil+O0.5
[72] DtlltITPI: IUU M
[73 ] IA:-D+IENDO+Uii U
[74] b2:I-Itl
L75] +(I=I£'ND+I)pB1
L76] Ii-+(I-1EiNDO)-0. 5
L 77] 1 i'lIDPiiIxIi I
L78] VXLI]*-X+R-iGCxCOS PHI
L79] VY-Y-RifOxSIN PII
L80J VZLI]-Z+X ZI Y
L 81j 'i V;LI]X iLX£ Y
L82] VliYLI+-X NYZ Y
L83 VDS [I'-X DS Y
L84 J ViXZ L[I] -x iXR Y
i851 VIiXILI]-X .IXI Y

66]J ViliT'LI]*-X ilYii Y
L87] ViiYI[LI]-X iYI Y
L[88 Vi;iiZLI]-X ilZR Y
L89 ViilI[I] -X HZI Y
L90] -+B2
[91] iL3:lI+-l
[92] 35:i'I+iiI+1
L93] '(iI=ARl+T))pBl1
L 94] l-- 1l
[95] Bi9:J iiNJ-+1
[96] - (iiJ=:AR 2+l) pB5
L 97 ] 'i' iO-FPNO +1
L 98 J Iviil+IXl'-IYR+IY IIZR+IZI+ O
L 99] 2J 7AiiIxDTA

L100] FIii'JxuFI
L101] STA-SIZN TA
L102] CTA-COS TA
L1031] 'FI+COS FI
[104] S'I+'-S)1 E'I
L105] I+O
L106]B7 :I+I+l
L107] +(I=T+1)pbG
L108]J ,L-x ( ( VX[I]xCFIxSlA) +VYLI]xxS,'xlx2'A) V Z[I]xC2'A
L 10 ] CID+COS XD
L 110 J SKD+SIIN A'
Ll11] AXIR+(VNY[I]xVliZRLI])-VIlYH[I]
L1 12] AXI-( Vl Y I I x VIIZI[I] )-V VYI LI]
L113] IXh'+IXR+ ( ( AXRX CKD ) -AXIXSKD ) xVD S[I ] / 1
L114] IXI+IXI+( (AXRXSKD)+AXIxCD.KD)xVDS[I] x U°,\ CI
L 1 1 5 ] A Yk+ ViiAl? L I J - ViX E I I x VHIZi.'[ I e s
L116] AYi+-VIIXILI]-VINX[I]xVHZI[I]
L117J IYTi+IYR+( (AYxCKD )-AYIxSD ) xVD[I]CI
Lll8] IYIIY1-+( (AYlxSKD)+AYIxCKD) VDS[I]
L 119] AZR-+( ViIX[I]xViYR[I] ) -VNY[I]XVIIXR[I]
L120] AZI+-(VNX[I]xVIYI[I])-VNY[I]xVzXI[I]

FIG 8.1 (continued)

BEAM (ORIGINAL)

(55)



point as a 3 element vector and H as say a 2 by 3 matrix. This

in turn offers a general reorganization of BEAM along lines

encountered in Section 6 of this report. The strategy would be

to create an array which encompasses each of the p THETA by

p PHI points in both real and imaginary components in each of

the x, y, and z directions. These values are then calculated for

each of the segments found in all of the annular rings. If this

number is N , then the array would be of a size which is

(p THETA), (p PHI), 2 3, N

A plus reduction along the last dimension approximates the

integral and produces the answer in a cartesian coordinate

system.

One immediate problem is that for THETA and PHI increments

of 3 degrees to cover say 900 in each of THETA and PHI requires

30 x 30 x 2 x 3 = 5400 values, each using 8 bytes for storage and

thus requireing 43200 bytes for the result. Intermediate

calculations become even more demanding. The total number of

segments contributing to the calculating is given by N + +/6 x I R

where R is the number of rings.

+/6 x l R + + 6 x +/l R + - 6 x .5 x R x R + 1 E + 3 x R x R + 1.

R is dependent on the geometry and wave length; for say a 30

foot diameter antenna with a wave length of .425, R will be 167

and this means that N will be 84,168 as calculated by Javid's

original APL antenna radiation program. This clearly indicates

that .,3.344 biŽtesps 6Ou'i-de n'eee to 'Tore t:.c

values. Clearly, looping of some kind is imperative. The choice

was to attempt to maintain all points for THETA and PHI in

three dimensions and two components of the complex numbers and

then generate as many segments as space will allow.

The functions for doing this but neither reconverting to

spherical coordinates nor computing the power (See lines 124-132

of Figure 8.1) are shown in Figure 8.2.

(56)



VBEArF iri V
V REAM

[i ] IITIALIZE
[21 S-LtfDA'4.731666666666667
[3] L+tR4-LO.5xDIA+S
[41 LOOP: ONlx NUM<pRHO
[ 5 ] CETPORE
[6] ON:+CONVERTxiO=pRHO
[7] SI+NUl pRHO
8]1 XYZ-(SI+RHO) POIFT SI+P..T

[ 9 RPnHOSI+RHO
[10] PHI-SI +PHI
[11] VNH+H XYZ
[12] KD+XxAPNG+.xXYZ
[131 KD+ 2 1 O.0 3 1 2 4 k(3,pKD)p'D
[14] NV+N ZYZ
[15] VNlH +( V CROSS VNH[f 1;; ),[0.5 NV CROSS V[lNIHF2;;]
[16] VNH+ 2 3 1 4 5 V(AR,pVNH)pVNH
[17] VNH+(-f VNHXKD) ,FO.5]+ VNI7xeKD
[18] KD+(2,AR,3,SI)pSItDS
[19] I+I++/VNHxKD
[201] DS-SI DS
r21] -LOOP
[22] CONVERT: 'ADD THE CTS CODE HERE'

V

VII TIA LI ZE[ r V
V INITIALI. E

[1] 'ENTER NUMBER OF STEPS (OF 3 D7GREES) FOR TIlETA AND P
EI '

[2] AR+1+0
[3] 'PEFLECTOR DIAMETER='
r 4 1 DIAU[]
[5] 'FOCAL LENGTH ='
F 6 ] Fr-[]
r 7] 'UAVELENGTl ='
[ 8] K-O02TLMDA+Fn

,9 ] I-(2,A R,3)pO
[10] DS-+PI+-RHO nio
rll] TA+O(3x-l+tilAR)+180
[12] FIo( 3x- 1+ -l+AR)1PO8
[13] ANG- 3 1 2 (1 1 2 o.o0(WAR)pTA)x(2 1 o.oARpFI),rl 1

V

VGETMORE[ O] V
V GETMORE; J; NlO; AP!HI; ARHO

1l] BLD:+Oxil>pL
[2] J I +L
[3] L1-+L
[41] APlI+o02+70+-6xJ
[ 5] PI+PHI, APlIx-O . 5+ NO
r[6] PHO-RHO, ARHO-NOpSxJ- . 5
[7] DS+DS,SxARH4OxAPHI
[8] -*PLDx tNUA!>pRHlO

FIG 8.2

BEAM (MODIFIED)

(57)



VPOINTE ] V
V XYZ4-RHO POINT PHII

r1] XYZ+(3,poRO)p(RHOHOx2oPHI),(RHOxloPHI),(RHO+4xF)-F

V Z-H XYZ;R;MR;SR;T
[1] z+(e 1 0 +XYZ)+(2,SR+pR)pMI?+(R+f-XYZ*2)*

0.5
[2] T2 2 1 o.o:x'xPR
r3] Z+(2 3 ,SR)p(SRpO),(Zl[;lx-T[1;]),(Z[2;]xT[1;] ),(SRpO

),(7[1;]xT[2;]),zr2;]x-Tr2; 

V VN -1N YZ
[1] VN+((-1 0 SXYZ)+(-1 0 +pXYZ)p(, 2 0 +XYq)-(+fXY%*

2)*n.5),[1] 1

vcno.?'s F] v
V Z+A CROSS B

[1] ",+-f((leA),0O.5] 2eA)x(2eB),F o.5 leB
V

vCTS, []V
V Z-L CTS R; .4

[l] R -(1C[V21 2 2 3 p 1. 1 1 1 1 i)x((M.f- 2 3 p 0 0 0 o 1 1
),[2] 2 2 3 o 1 i 2 2 2 1)oR e 2 3 1 0 2 3 2 pi?

[2] :+( (R[ 1;;],[1] 1 O)xF2;:1,f'!] 1 o)+.xL
V

A CTS GIVES THE CARTESIAN TO SPITERICAL CONVERS.rON FOR A SINGl
9 TO USE IT REQUIRES CONDITIONING THE ARRAY RESULT.TING FROM BT

FIG 8.2 (continued) 0

BEAM (MODIFIED)

(58)



8.3 Size of Computations and Their Implications

In order to check the revised APL program against FORTRAN

the modified APL program was compared against the FORTRAN H

version. The original data given by Javid in [18] was miniaturized

by selecting a similar number of THETA by PHI increments and not

changing the wave length. The radius and the focal length,

however, were reduced by a factor of 10 (from 30 and 36 feet to

3.0 and 3.6 feet respectively). This decreases the area and hence

the computations by 2 orders of magnitude. The answers would not

be numerically accurate for such a problem but the amount of

computation would be. The computations were done so as to

produce results in a cartesian coordinate system to check whether

the two programming efforts produced equivalent results up to

that point.

The results of the first test may be summarized by:

Time rogram Size

Compile Load Go
SYSTEM and Go (sec*60) (sec'60) (bytes)

APL 25,681 2980

(7 min, 8se (125K workspace)
1,60th)

18,886 (Program)

FORTRAN 7656 2059 99,328 (load module)

(2 min, 7 (34 sec 19 (includes 57,552
sec., 36 60th) 60th) bytes of COMMON and

22,894 bytes of
subroutine for I/0 etc.

....

This makes the execute step in FORTRAN 12.47 times as fast as

the APL execution, with the APL program 6.34 times as compact

as the FORTRAN program. Taking into account 160 K partitions for

compiling and about 100 K bytes needed at execute time compared

with using 125 K workspaces in APL, APL is 2.91 times as

(59)

I



costly as FORTRAN in this case when measured in terms of core

residency times (byte-seconds), a simple product of space and

time.

If we expect the time of execution on the actual program to be

increased by a factor of 100 due to increasing the diameter and

focal length by a factor of 10, then one could expect a CPU

execute time of 11 hours, 53 minutes and 22 seconds in APL.

This time was too excessive to permit full execution within

the scope of this work; however, due to the way in which the

area of the dish is divided we may time a portion of the program

and estimate with reasonable accuracy the time involved.

Since the full test was made with 16 increments for THETA

and 1 for PHI while the "mini" antenna test had 6 increments

for THETA and 3 for PHI, some compensation for the estimated

times would have to be made to compare the two figures for the actual test.

Based on 83.75 minutes for CPU time (12.9% of the work) the

APL version of the radiation pattern program would run for 10

hours and 49 minutes .

The FORTRAN H program running for 20.57 minutes and accomplishing

44% of the work has an estimated time of 46.8 minutes. This leads

to a ratio of 13.87.

When we adjust the amount of THETA and PHI points for

which the calculations are done for the "mini" test as opposed to

and the full scale antenna, the APL estimates are consistent with

the change in the amount of work in going from the "mini" antenna

to the full scale problem, two orders of magnitude .

Some observations may be drawn from the above. First,

problems of this size are reasonably large, even in a conventional

sense for a system 360 model 50; the times projected for an

interpretive execution in APL place that mode of solution

beyond practicality. Moreover, the problem is.of such a nature

that attempts to trade space for execution speed by removing loops

(60)



lead to difficulties in size.

The present implementation of APL requires the workspace

size to hold all temporary results and removal of explicit looping

by using an array approach for computation implies large (in this

case very large) temporary results. The fact that the algorithm

for this problem can be written so as to have essentially no

loops is of value only if the time and space requirements of the

implementation allow the exploitation of such a formulation 

Unfortunately, this is not the case at present. Large increases

in workspace size or in physical space for temporaries negates

the favorable code density of APL .

An APL implemented on a machine having virtual memory would

allow for problems of this sort, the availability of large

conceptual arrays while keeping the working set of physical items

within reason. Of course the same system could be applied to the

FORTRAN program, but its use of explicit looping in the algorithm

has less requirement for such automatic paging to manage.the data.

The ability of APL to trade time for space is thus, in this

case, somewhat a function of the implementation. A change in

implementation strategy might reduce the cost of interpretation,

even without a virtual machine. Such a change would probably not

change the overall results, but allowing a greater degree of

looping in the same amount of computer time would permit a

reduction in space requirements. This could make APL more attractive

if the original consideration had been one of sadrificing cpu cvr.les

to gain space.

The value of APL to specify and develop algorithms for

implementation in other languages is well established by this

example.

In fact the time to get the new APL version running was less

than that to keypunch and debug the FORTRAN version using its listing.

(61)



9.0 CONCLUSIONS

This study has examined a number of areas of programming

related to scientific problems. These range from the very large-

where the total number of values for temporaries and final results

in a typical problem could run into billions of bytes of storage,

down to the small where both the source code and the generated

data are in the range of hundreds of bytes or less.

We have been concerned in this range of tasks with the use of

an interpretively based language, APL, in comparison with

compiled code, as generated by FORTRAN. While a number of

problem areas examined have been implemented for both batch and

a time sharing environment, we were primarily concerned with

execution times which give emphasis to the more traditional batch

mode of operation. In that mode of operation much of the

compilation may indeed be recompilation and in general little is

said of the time and hence the cost of scheduling, compiling and

link editing.

The studies here did not address the issue of the efficiency

of programming in APL as opposed to more traditional languages.

Such a study, if objective, would be valuable, but usually

studies comparing an interactive approach versus batch programming,

even in the same language, often find a greater variation among

programmmers than between methodologies.

Rather, these examples have been pointed toward issues of:

1) timings for both execution and in the FORTRAN environment,

total time for compilation, loading and execution and 2) space

requirements. Toward these ends FORTRAN H OPT = 2 was used as

the compiler, and in both the FORTRAN and APL cases the system

was run without confluence.

Breed and Lathwell [20] have previously reported execution

times for APL which are five to ten times slower than compiled

code. We have not found results which uniformly contradict that

(62)



range of results. There are cases reported herein where compiled

code is from 4 to 15 times as fast as APL with the larger ratios

occuring for very large problems.

There are also cases where APL runs faster than compiled

FORTRAN measured at the execute step. These instances tend to be

those such as inner products and DOMINO and others where

reasonably sophisticated FORTRAN programs are themselves

replaced by an APL primitive.

There are a number of instances where FORTRAN in the Go step

was faster than APL but compared to Compile, Load. and Go,APL

has the advantage. Thus, if there is even reasonable need to

recompile during development, APL has.a cost.advantage over the

entire range of use.

APL code is in the order of 10 times as dense as compiled

FORTRAN. The figures do not include data space in APLin that it

is dynamically allocated but the figures do include the pre-

dimensional space allocated in FORTRAN. Thus, in the present

implementation, when APL is written to take.advantage of the

array capabilities of the language, then the.space requirements

for APL will increase greatly. Of course that space is upper

bounded by the workspace size but the code.density.takes an

additional meaning in any system where the computer.hardware

performs..-a.mapping process in memory hierarchy independent of

software. This could be significant in virtual.or cache memory

systems.

The size of the APL interpreter is fairly large, 88 K bytes

in APL\360 , but the run time support packages for FORTRAN

programs are often about 1/4 of that size and in..general are not

shared among.processes. Thus, if multiprogramming is.done, after

four or five FORTRAN programs are executing the size.of APL

interpreter has probably been used to support the..running programs

anyway.

(63)



In general for small.problems, those that fit well within the

defacto standard 36-K workspaces,APL compares.very favorably with

compiled code, taking.into.account both .time..and space. An

improvement of a factor of 3 or 4 would make APL extremely

competitive over much of the range of situations encountered in

this.report. Improving the speed of. APL by 50 to 100 per cent

is no doubt obtainable without a major reimplementation.effort.

Two observations are worth noting as closing remarks.

First, to be at all competitive, algorithms.must be written

in "good" APL which often means rethinking the problem, but

even with that in mind APL may be competitive not because it

and the algorithms being executed are well written,.but.rather

because the batch processing is less efficient.than we have been

willing to admit.

Second, the present. version of. APL\360. is.not radically

changed from the original implementation which.was..an.experimental

research.tool, implemented to provide reliable support of

terminals-running problems somewhat more.restricted..than those

encountered in normal batch processing. The.accumulated and

published knowledge concerning efficient implementation.of APL

is, at this writing, pretty scant. There is not yet..a.broad base

of experience founded on actually.trying.different implementation

strategies which have been targeted at open.competition with

traditional processing methods.

While this study does not establish APL tobe.. as..effective

as we would like it to be, it is no. doubt..better than many thought

it to be.. We may anticipate research.and development to improve

it., beyond-what we now:have. In its.use. itis.certainly

superior in many:areas and use will probably confirm its effectiveness

in a broader sense,.but. in the interim we must..agree.with Frank

Plumpton Ramsey that, "We are in the ordinary.position of scientists

of having to be content with piecemeal.. improvements; we.can make

several.things. clearer,.but we. can not make. anything clear."

(64)



References

i1] Iverson, K.E., A Programming Language, (1962) John Wiley
and sons, New York.

[2] Falkoff, A.D., K.E. Iverson and E.H. Sussenquth, "A
Formal Description of System/360," IBM Systems Journal,
3,3 (1964), pp. 198-262.

[3] Falkoff, A.D. and K.E. Iverson, APL\360 Users Manual, (1968)
IBM Corporation.

[4] Gilman, L. and A.J. Rose, APL\360: An Interactive Approach,
(1970) John Wiley and Sons, New York.

[5] APL\360 - OS/DOS General Information Manual, IBM Corp.
(GM20-0850).

[6] Jenkins, M.A., "The Solution of Linear Systems of Equations
and Linear Least Squares Problems in APL," Technical Report
No. 320-2989, June 1970, IBM, New York Scientific Center.

[7] Jenkins M.A.,"Domino - An APL Primitive Function for
Matrix TIversion - Its Implementation and Applications,"
Proceedings SHARE XXXVII, Vol. 1, pp. 380-388.

[8] Westlake, J.R., "A Handbook of Numerical Inversion and
Solution of Linear Equations,!' John Wiley and Sons, Inc.,
New York, 1968.

[9] Hellerman, H., Digital Computer Systems-Principles, McGraw-

Hill, New York, 1967.

[10] Piatkowski, Computer Programs.Dealing with.Finite State
Machines Part II, Department of Electrical Engineering,
University of Michigan, Ann Arbor, Michigan, July 1967
(AD 658 001).

[11] Foster, Garth H., "Using APL to Investigate Sequential
Machines," Technical Applications Papers NEREM-70 (70 C 63),
pp. 120-127.

[12] Hartmanis, J. and R.E. Stearns, Algebraic Structure Theory
of Sequential Machines, Prentice-Hall, Englewood Cliffs,
New Jersey, 1966.

[13] Brigham, E.O. and R.E. Morrow, "The Fast Fourier Transform,"
IEEE Spectrum, December 1967.

[14] Singleton, R.C., "On Computing the Fast Fourier Transform,"
Communications of the Association of Computing Machinery,

10, 10 (October 1967).

(65)



References Continued

[15] Singleton, R.C., "Algorithm 338-The Fast Fourier Transform,"
Collected Algorithms of the Communications of the
Association for Computing Machinery.

[16] Jones, A.L., "FFT - A Fast Fourier Transform," The APL
Quote-Quad.

[17] Javid, M., A Digital Computer.Program for Calculating the
Radiating Pattern of an Antenna of Arbitrary Geometry
with Arbitrary Primary Feed, Goddard Space Flight Center,
Greenbelt, Maryland, Document X-200-67-639 (1967).

[18] Experimental Use of A Programming Language. (APL) at the
Goddard Space Flight Center, (C.J. Creveling, Ed.)
Goddard Space Flight Center, Greenbelt, Maryland,
Document X-560-68-420, November 1968, pp. 9-14.

[19] Kolsky, H., "Problem Formulation in APL," IBM System
Journal, 8, 3(1969), pp. 204-219. '

[20] Breed, L.M. and R.H. Lathwell, "The Implementation of
APL\360," Interactive Systems of Applied Mathematics,
(Klerer and Reinfelds, Eds.) (1968), Academic Press,
New York, pp. 390-399.

(66)



APPENDIX A

FAST FOURIER TRANSFORM

PROGRAMS ( APL' and FORTRAN)

(67)



VFFTE[ L ]3 V

V ZI PFT X;J;]';L;..;P.T;O;S ;;; A; A
F[] ,[4-L2*-O-i?',OpS-1-2X~O+xpM-,2epJT-[t7+ -l.+pX
r2] Z+X[; ( KT-O)+(,:p2 )LL+-e(!p2)TJ-O]
r3] '- 2 1 o.oo((xI)xO-J)+-+lf,!
1[4] Za ,-;J-,r"[ I,']xL[; I] +(p,)p( --f X ; x ,?[ ;A ] ).+f ;A AIO+ ;TprT.',S+.&-7'+ x

.o- l 2x.Fr:] ]]I x z[ ;A _-J+ ,r,[FK]xOL[; ] 1
F.5] 5 ((!?+0)>':+'+ 1 )/4
r[6] +Z, I7*0.5

(68)



//

//C95336 JOH C
// (0643,EE,5,5),'FFT33A',REGION=160K
//PRF EXEC FORTHCLG, PARM.FORT='SOIJRCEMAPOPT=2'
//FORT.SYSIN DI) *
C MAIN PROGRAM TO COMPUTE CACM ALGORITHM 338
C ALGOL PROCEDURE FOR THE
C
C FAST FOURIER TRANSFORM
C
C BY RICHARD C. SINGLETON
C
C

C
C MAIN PROGRAM FOR INPUT AND OUTPUT FO(R FFT
C USES PROCEDURES COMPLEXTRANSF[JRM AND REALIRANSFURM
C

COMMON A(257) ,B(257),M,NINVRSE
REAL*8 A,R
INTEGER*4 M,N,I,J,L
LOGICAL INVRSE
READ (5,1000) LINVRSE

1000 FORMAT (2X,18,2X,L1)
N= 2*L
READ (5,1002) (A(I),I=1,N)

1002 FORMAT (40D20.10)
READ (5,1002) (B(I),I=1,N)
D0) 1090 J=1,2
M=L
CALL CTRFRM

1090 INVRSE=.NOT. INVRSE
STOP 9999
END
SUBROUTINE CTRFRM

C
C PROCEDURE COMPLEXTRANSFORM (A,B,M,INVERSE)
C USES PROCEDURES FFT2,REORNIER
C

COMMON A(257),B(257),M,N,INVRSE
REAL*8 A,R,P,O
INTEGER*4 M,N,J,NA,NAA
LOGICAL INVRSE
N=2**M
0=1.000/DS0RT(DFLOAT(N))
P=O
IF (.NOT. INVRSE) G.) To) 10
0=-0
NA=IABS(N-1)+1.0000001
DO 9 NAA=1,NA
J=N-NAA

9 B(J+i)=-B(J+I)
10 CALL FFT2 (N)

CALL REORI)R (N,.FALSE.)
NA=IABS(N-1 )+1.0000001
DO) 12 NAA=1,NA
J=N-NAA
A(J+I)=A(J+l1)*P

12 B(J+I)=B(J+i)*Q
RETURN

(69)



END

SUBROUTINE FFT2 (KS)
C
C PROCEDURE FFT2 (A,B,N,M,KS)
C USES NO OTHER PROCEDURES

C
COMMON A(257),B(257),M,N,INVRSE
REAL*8 AB,AOAlA,A2,A3,BO,B1,B2,B3

REAL*8 RAD,C1,C2,C3,Sl,S2,S3,CK,SK,SO
INTEGER*4 M,N,KS,C(9),NA,NAA
INTEGER*4 KO,K1,K2,K3,SPAN,J,JJ,K,KB,KN,MM,MK
LOGICAL INVRSE
SQ=0.707106781187
SK=0.382683432366
CK=0.92387953251
C(M+1)=KS
MM=(M/2)*2
KN=O
NA=IABS(M-1)+1.0000001
DO 240 NAA=I,NA
K=M-NAA

240 C(K+1)=C(K+2)/2
RAD=6.28318530718/(C(1)*KS)
MK=M-5

C
C LABEL 250 IS L IN ALGOL

C
250 KB=KN

KN=KN+KS
IF (MM .EO. M) GO TO 260

K2=KN
KO=C(MM+1)+KB

C
C LABEL 252 IS L2 IN ALGOL
C

252 K2=K2-1
KO=KO-1
AO=A(K2+1)
B0=B(K2+1)
A(K2+1)=A(KO+1)-AO
A(KO+1)=A(KO+1)+AO
B(K2+1)=B(KO+1)-BO
B(KO+1)=R(KO+1)+BO
IF (KO .GT. KB) GO TO 252

260 C1=1.O0
S1=0.0
JJ=O
K=MM-2
J=3
IF (K .GE. O) GO TO 275
GO TO 294

C
C LABEL 270 IS L3 IN ALGOL
C

270 IF(C(J+1) .GT. JJ) GO TO 272
JJ=JJ-C(J+1)
J=J-1
IF (C(J+1) .GT. JJ) GO TO 272
JJ=JJ-C(J+1)
J=J-1

(70)



K=K+2
GO TO 270

272 JJ=C(J+1)+JJ
J=3

C
C LABEL 275 IS L4 IN ALGOL
C

275 SPAN = C(K+1)
IF (JJ .EO. 0) GO TO 282

C2=JJ*SPAN*RAD
CL=DCOS(C2)
S1=DSIN(C2)

C
C LABEL 280 IS L5 IN ALGOL

C
280 C2=Cl**2-Sl**2

S2=2.0*Cl*Sl
C3=C2*C1-S2*Sl
S3=C2*Sl+S2*C1

282 NA=IABS(SPAN-i)+1.0000001
1)O 290 NAA=1,NA
KO=KB+SPAN-NAA
K1=KO+SPAN
K2=K1+SPAN
K3=K2+SPAN
AO=A(KO+1)
BO=B(KO+1)
IF(SL .NE. O) GO TO 284
Al=A(Kl+1)
Bl=B(K1+1)
A2=A(K2+1)
B2=B(K2+1)
A3=A(K3+1)
B3=B(K3+1)
GO TO 286

284 Al=A(K1+1.)*C1-B(K1+1)*S1
BR=A(Kl+1)*SI+B(Kl+1)*Cl
A2=A(K2+1)*C2-B(K2+1)*S2
B2=A(K2+1)*S2+B(K2+1)*C2
A3=A(K3+1)*C3-R(K3+1)*S3
B3=A(K3+1)*S3+B(K3+1)*C3

286 A(KO+I)=AO+A2+AI+A3
B(KO+i)=BO+B2+BI+B3
A(Kl+l)=AO+A2-Al-A3
B(Kl+l)=BO+B2-Bl-B3
A(K2+1)=AO-A2-Bl+B3
B(K2+1)=BO-B2+A1-A3
A(K3+1)=AO-A2+B1-B3

290 B(K3+1)=BO-B2-Al+A3
IF (K .GT. O) GO TO 29h6

KB=K3+SPAN
IF (KB .LT. KN) GO TO 298

C
C LABEL 294 IS L6 IN ALGOL

C
294 IF (KN .LT. N) GO TO 250

RETURN

296 K=K-2
GO TO 275

298 IF (J .EO. O) GO TO 300

(71)



J=J-1
C2=C1
IF (J .EO. 1) GO TO 302
Cl=(CI-S1)*SQ
Sl=(C2+S1)*SQ
GOl) TO 280

300 K=2
J=MK
GO TO 270

302 Cl=CL*CK+Sl*SK
S1=Sl*CK-C2*SK
GO TO 280
END
SUBROUTINE REORDR (KS,REEL)

C
C PROCEI)DURE REORDER (A,B,N,M,KS,REEL)
C USES NO OTHER PROCEDURES
C

COMMON A(257),B(257),M,N,INVRSE
REAL*8 A,B,T
INTEGER*4 M,N,KS,C(9),LST(9),NA,NAA
INTEGER*4 I,J,JJ,K,KK,KB,K2,KU,LIM,P
LOGICAL INVRSE,REEL
C(M+1)=KS
NA=IABS(M-1)+1.0000001
DO 450 NAA=1,NA
K=M-NAA+1

450 C(K)=C(K+I)/2
J=M-1
P=J
KB=O
I=KB
IF (REEL) GO TO 454
M=M-1
GO TO 460

454 KU=N-2
NA=IABS(KU/2)+1.0000001
DO 458 NAA=1,NA
K=NAA*2-2
T=A(K+2)
A(K+2)=B(K+1)

458 B(K+1)=T
460 LIM=(M+2)/2

IF (P .LE. O) RETURN
C
C LABEL 464 IS L IN ALGOL
C

464 K2=C(J+1)+KB
KU=K2
JJ=C(M-J+1)
KK=KB+JJ

C
C LABEL 468 IS L2 IN ALGOL
C

468 K=KK+JJ
C
C LABEL 472 IS L3 IN ALGOL
C

472 T=A(KK+1)
A(KK+1)=A(K2+1)

(72)



A(K2+1)=T
T=B(KK+1)

B(KK+1)=B(K2+1)
B(K2+1)=T
KK=KK+1
K2=K2+1
IF (KK .LT. K) GO TO 472
KK=KK+JJ
K2=K2+JJ
IF (KK .LT. KU) GO TO 468

IF (J .LE. LIM) GO TO 476
J=J-1
I=I+1
LST(I+1)=J
GO TO 464

476 KB=K2
IF (I .LE. 0) GO TO 480
J=LST(I+1)
I=I-1
GO TO 464

480 IF (KB .GE. N) RETURN
J=P
GO TO 464
END

(73)



APPENDIX B

THE FORTRAN VERSION

OF BEAM FOR THE

NASA RADIATION PATTERN

PROGRAM

(74)



//
//C91540 JOB C
// (0643,EE,30,40),'BIM423',REGIC)N=200K
// EXEC FORTHCLG,PARM.FORT='SOURCE,MAP,OPT=2'
//FORT.SYSIN DD *
C
C ********DRIVER PRIOGRAM FOR COMPUTING RADIATION PATTERN********
C

COMMON A,AXIAXIAXR,AYI,AYR,AZI,AZR,A1,A2,A3,A4,A5,A6,A7, B,AR,BR
CUMM[IN CACB,CELNUM,CFI,CFRCGCKO,CKR,CRICRR,CTACTI,CELAST
COMMON COSTA,CPHI,SINTA,SPHI
COMMON [)1,D2,)3,DIA,DPHI,DR,DRHO,DRR,DRI,DI'R,DTI,DFR,)FI
COMMON Ell,E12,E13,E21,E22,E2E23,E31,E32,E33,EX,EY,EZ
COMMON F,F1,FLDA,FNUM,FRING,FR,FRC,FZ,GR,G,BIG
COMMON H,HX,HY,HZ,HXF,HYF,HZF
COMMON IS,IE,ITI,ITr2,T3,IT4,IT5,IT6,IT7,1T8,IF1,IF2,1F3,IF4,IF5
COMMON IF6,IF7,IF8,N2,N3,N4,N5,Nh,N7, IRM,L5,L6,L7,L8,L9,LiO
COMMON ,II1,ID,IDSLJM,IEND,IIENDO,IFI,IN,IR,IRI,ISUM,ITI,IBIG
COMMON J,Jl,JBI,JBIG,JRING,LIR,LIR1,LSW,LL,L2,L3,L4,M,IiST
COMMON NFI,NFP,NPR,NR,NRING,NRINGI,NRSG,NSUMDS,Nl,NTA,NU,NLLR,NUM
COMMON PX,PY,PZ
COMMON PHI,POWER,O,QD,QFI,OR,PHASE,Rl,R2,RP,RHO,RH02
COMMON SA,SB,SFI,SG,SKDSKRSTA,TA,TPI,VDSJ
COMMON X,XI,XIUL,XRXXRUL,Y,YI,YIUL,YR,YRUL,Z,ZI,ZIUL,ZR,ZRUL
COMMON NRI(400),NSUM(400),NUMSIJM(400),NUMT(250),NUMF(250)
COMMON CBSTD(250),CBSFD(250)
COMMON VX(1000),VY(100),VZ(1000),VDS( ),VHR(000),VHXXI(1000)
COMMON VHYR(1000),VHYI(1000),VHZR(1000),VHZI(10OO),VNXZ(1000)
COMMON VNYZ(1000)
DIMENSION PWR(250)
DIMENSION FV(250,6)
DIMENSION JCK(54)

C
C ********BEGIN READING********
C
29 READ(5,40)NTA,NFI,M,N(U,L3
40 FORMAT(5110)

IF(NlA.EQ.O) GO TO 8060
READ(5,41)DIA,DIAl,DIA2,Al,FRC,FLOA,F

41 FORMAT(4F10.5,F14.10,2F10.5)
READ(5,403)A,B,G,EX,EY,EZ,D1,D2,D3

403 FORMAT(9FH.3)
READ(5,402)(CBSTD(I),I=1,NTA)
READ(5,402)(CBSFD(I),I=1,NFI)

402 FORMAT(8(1X,F8.3))
C
C ********READ THE FIELD POINTS WHICH ARE NOT ro BE CUMPLETEI)D****
C

READ(5,877)(JCK(J),J=1,54)
877 FORMAT(18I4)
C
C ********END OF READING********
C
C **********INITIALISE********
C

DO 4321 I=1,250
DO 4321 J=1,6
FV(I,J)=O

4321 CONTINUE
DO 205 ID=1,250

(75)



205 PWR(ID)=O.O
NUMSUM(1)=0
L5=0
L6=0
JRING=1000

LIST=1000
C
C ********BEGIN PREFACE WRITING******~*
C

WRI TE(6,1006)
1006 FORMAT(1HI)

WR I TE (6,9876)
9876 FORMAT(/3X,66HTHE DATA CARDS READ,THEIR CORRESPONGING PARAMETERS

1AND FORMAT ARE)
WRITE(6,43)

43 FORMAT(/3X,72H1234567810123456782012345678301234567840123456785012
134567860123456787012)
WRITE(6,44)

44 FORMAT(/3X,72HNO. TETAS NO. FIS ARRAY SIZE CUS**N DETAILS YES
1 OR NC
WRITE(6,9874)NTA,NFI,M,Nll,L3

9874 FORMAT(3X,5110)
WRITE(6,45)

45 FORMAT(/3X,76HDIAMETER HOLE DIAl HOLE DIA2 DEVIATION SCALE
1 WAVELENGTH FOCAL DIST.)
WRITE(,46)DIAIA 1,DIADIA2,A,FRC,FLDA,F

46 FORMAT(3X,4F10.5,F14.1O,2F10.5)
WRITE(h6,9871)

9871 FORMAT(3X,4HALFA,4X,4HBETA,4X,4HGAMA,7X,1HX,7X,IHY,7X,1HZ,7X,2HDI
1, 6X,2HD2,6X,2HD3)
WRITE(6,986h9)A,B,G,EX,EY,EZ,Dl,D2,D3

9869 FORMAT(3X,9F8.3)
WRITE(6,1003)

1003 FORMAT(1H )
WRITE(6,9H73)

9873 FORMAT(3X,28HTETA DEGREES OF FIELD PO(INTS)
WRITE(6,4021)(CBSTD( I),I=1,NTA)

4021 FORMAT(3X,8( 1X,F8.3))
WRITE(6,1003)
WRITE( 6,9872)

9872 F()RMAT(3X,26HFI DEGREES OF FIELD POINTS)
WRITF(6,4021)(CBSF(I)(I),I=,NFI)
WRITE(h,O0)

60 FORMAT(/3X,56HFOILLOWING POINTS IN THE TETA-F1 MATRIX HAVE BEEN OMI
1TTED)
WRITE(6,61)(JCK(J),J=1,54)

61 FORMAT(3X,1814)
C
C ********END OF PREFACE********
C
C ********CALCULATE ELEMENTS OF EIILER MATRIX********
C

AR=A*DR

CA=COS(AR)
SA=SIN(AR)
BRR=B*DR
CB=COS ( BR)
SB=SIN(BR)
GR=G*DR
CG=COS(GR)

(76)



SG=SIN(GR)
E11=CG*CA-CB*SA*SC
E21=-SG*CA-CB*SA*CG
E31=SB*SA
E12=CG*SA+CB*CA*SG
E22=-SG*SA+CB*CA*CG
E32=-SB*CA
E13=SG*SB
E23=CG*SH
E33=CB
PX=D1*Ell+D2*E21+D3*E31
PY=Dl*EI2+D2*E22+D3*E32
PZ=Dl*E13+I)2*E23+D3*E33

*+******' EGIN SEGMENTATION**.******

D3=(1.-Ul)**2-02**2)**.5
TPI=2.*3.141592654
DR=TPI/360
O=TPI/FLDA
DRHO=FLDA/FRC
NR=(U)IA/2.)/DRHO
L7=(DIA1/2.))/ )RHO
LA=(DIAZ/2.)/DRHO
WRITE(h6,102)NR

102 FORMAT( ///,3X,25HREFLECTOR IS DIVIDED INTO,I4,7H RINGS.)
I=0
J=O

13 I=I+1
IF(I.GT.999) GIJ TO 701
ISlIM=O

12 J=J+l
IF(J.GT.NR) GO TO 10
I )SUM=6*J
IF(IUSUM.GT.M) G.I TO 14
I SUM= I SUM+ I DSUM
IF(ISUIA.GT.M) GO TO 11
GU TO 12

11 11=1+1
NRI(I1)=J-1
NSUM(I1)=ISUM-IDSUJM
J=J-1
GO TO 13

14 WRI TE(,103)J,M
103 FURMAl(//2X,37H THE NUMBER OF ELEMENTAL AREAS IN THE,14,20H RING I

iS LARGE THAN,15,42H .WILL CONSII)ER PART UF RINGS AS SEGMENTS.)
IF(ISUM.EO.O) GO TOI 876
I1=1+1
NSUM(I1)=ISUM
NRI(I1)=J-1
I=I1
L6=1

R76 L5=1
JRING=J
I1ST=I 1+1

51 NDIV=IDSIJM/M
NREM=IDSIIM-NDIV*M
00 511 ISK=1,NDIV
11 = 1+1
NRI(I1)=J'

(77)

C
C
C



NSJM (I 1)=M

511 CONTINUE
IF(NREM.EO.O) GO TO 875
I1=Ii+1
NRI(I1)=J

NSIIM(I1)=NREM
R75 J=J+l

IF(J.GT.NR) GO TO 10
I DSUM=5*J
(;G TU 51

10 WRITE(6,104)
104 FORMAT(//2X,55H CONTRIBUTION OF ALL REFLECTOR RINGS WILL BE PROCES

1SED. )

IF(L5.EO.1) GO TO 515
I1=I+1
NRI( I1)=J-1
NSUJM(I1)=ISUM

515 I=I1
15 LIR=I

LIRI=LIR-1
NRI (1)=0
NSIJM( 1)=0
NSUMDS=O
DO 201 IN=2,LIR

201 NSUMDS=NSI.JMDS+NSUM(IN)
WRI TE(6,1009) NSUMDS,LIRI,M

1009 FORMAT(//3X,35HTHE TOTAL NO. [OF AREAS IS NSUMDS = 18,
128H, lNO. [OF SEGMEiNTS IS LIRI = ,13,6H, M ,14,2H .)
WRITE(6,1008)DIA,FLDA,FRC

1008 FORMAT(//3X,37HRESULTS BASED ON INPUT DATA, DIA. = ,F8.4,
115H, WAVELENGTH = ,F8.4,31H ,SIDE OF ELEMENTAL AREA FRC = ,F8.5,
215H OF WAVELENGTH.)
WRITE(h6,1021)F,A,B,G,EX,EY,EZ

1021 FORMAT (//3X,2HF=,F8.3,6H,ALFA=,FR.3,6H,BETA=,FS.3,6H,GAMA=,FR.3,
120H,1RANSLATIONS ARE,X=,F8.3,3H,Y=,FR.3,3H,Z=,FR.3,2 .)
WR I TE (6,1031) Di ,[)2, [3

1031 FORMAT(//3X,34HTHE POLARIZATION COSINES ARE D1 = ,F8.5,6H,D2 = ,
1F8.5,6H,D3 = ,F8.5,2H .)
WRITE(6,7113)

7113 FORMAT(//3X,72HFOLLOWING ARE THE ORDER NUMBERS OF THE LAST RINGS I
1N SUCCESIVE SEGMENTS.)
WRITE(6,7114)(NRI(I),I=2,LIR)

7114 FORMAl(/ 21(3X,I3))
WRITE(6,7115)

7115 FORMAT(//3X,67HFOLLOWING ARE THE NUMBER OF ELEMENTAL AREAS IN SUCC
lESSIVE SEGMENTS.)
WRITE(6,7114)(NSUM(I),I=2,LIR)

C
C **: *****END OF SEGMENTATION********
C
C ·**e****BEGIN PREPARATION FOR SETUP******~*
C

BIG=O.
IR=O
14=0

16 IR=IR+1
C
C ********ALL SEGMENTS DONE******,*
C

IF(IR.EQ.LIR) GO TO 300

(78)



WRITE(6,1003)
NFP=O
IR i=IR+1
IF(IR1.GE.I1ST) GO TO 5051
NLLR=NRI(IR)
NPR=NRI( IR1)
NRSG=NPR-NLLR
IEND=O
Il.
J=-1

1 J=J+1
IF(J.EO.NRSG) GO TO 3
NRING=NRI(IR)+J+1
LSW = O
NRINGL=NRING+l
FRING=FLOAT(NR I NG)
FRING=FRING-.5
RHU=FRINCG*[)RHI)

RH02=RHO**2
I:I-1
I ENL)O= I END
NIJM=6*NR ING
FN(UM=NUUM
DPHI=TPI /FNUM
I END= I END)O+NUM
NUMSUM(NRING1)=IEND
IF(NRING.GT.L7.AND.NRING.LT.L8) GO TO 24

C
C ********SETUIP RING BY RINGc***:***
C

CALL SETUP
GJ TO 1

24 I=I END+1
G1) TO 1

C
C : '*:**:RING CONTAINS MORE THAN OINE SEGMENT****r***
C
5051 NPR=NRI(IR1)

NLLR=NPR-1
NRSG= 1
NRING=NRI (IR1)
LSW=O
NRING1=NR ING+1
FRI NG=FLJAT (NR I N\G)
FR I NG=FRING-.5
RHU=FRING*D)RH]
RH02=RHO**2
N(JM=64NR ING
IF(NRI(IR1).EO.NRI(IR)) GO TO 53
CELNUM=-.5
CELAST=FLOAT(NSUM(IR1))

52 1= 0
FNUM=NUM
DPHI=TPI/FNUM
NUtMSUM(NRING1)=NSUM( I R 1 )
I END=10000000
IF(NRING.GT.L7.AND.NRING.LT.LH) GO TO 25

C
C :'***-'***SET(.JP WHEN RING CO)NTAINS MlOR THAN ONE SEGMENT;.;**-*-*****
C

(79)



CALL SETUP
C

GO TO 3
25 I=IEND+1

GO TO 3
53 CELAST=CELAST+FLOAT(NSUM(IR1))

GO TO 52
C
C ********BEGIN WITH FIELD POINTS***; ****
C
3 JAK=O

Dfl 901 IFI=1,NFI
DO 901 ITI=1,NiTA
JAK=JAK+ 
I)0 903 JA=1,54

903 IF(JAK.EO.JCK(JA)) GO TO 901
NFP=NFP+1
NIJMF(NFP)=IFI
NUMT(NFP)=ITI

C
C - *******HEADING HAS BEEN WRITTEN****:***
C

IF(L4.E(.1) GO TO 2222
C
C ******'**PRINTING OF DETAILS NOT RE0UIRED********
C

IF(L3.EO.1) GO TO 2222
C
C ***'****WRITE READING FUR DETAILED DATA TABLE**;**--*
C

WRITE(6, 1006)
WRI TE ( 6,1003)
WRITE(h6,10(03)
WRITE(6,1034)

1034 FURMAT(3X,89HFOLLOWING TABLE GIVES VARIOUS FIELD VALUES FOR INDICA
1TED FIELD POINTS AND SEGMENT NUMBERS)
WRITE(6,1208)DIA,FLDA,FRC

1208 FORMAT(//3X,37HTHEY ARE BASED ON INPUT DATA, DIA. = ,F8.4,
115H, WAVELENGTH = ,F8.4,31H ,SIDE OF ELEMENTAL AREA FRC = ,F8.5,
215H OF WAVELENGTH.)
WRITE(6,1021)F,A,B,G, EX,EY,EZ
hRITE(6,1031)Dl,D2,D3
WRITE(6,1003)
WRITE(6,1003)
WRITE(h6,5555)

5555 FORMAT(//3X,12HFIELD VALlES,27X,3HERR,RX,3HERI ,8X,3HETR,8X,3HETI,
18X,3HEFR,8X,3HEFI,6X,5HPOWER,4X,lOHTETA PHASE)
WRITE(6,1003)
WRITE(6,5656)

5656 FORMAT(3X,34HPOINT NO. TETA FI SEGMENT)
C
C **:-**-;END OF HEADER WRITING**'**4***
C
C
C ********START INTEGRATION PROCEDURE****,***
C

L4=1
2222 XR=O.

XI=O .
YR=O.

(80)



YI=O.
ZR=O.
ZI=O.
TA=CBSTD(ITI)*DR
FI=CBSFD(IFI)*DR

STA=SIN(TA)
CTA=COS(TA)
SFI=SIN(FI)
CFI=COS(FI)

C
C ********INTEGRATE******-*
C

CALL ADDUJP
C
C ********TRANSFORM TO SPHERICAL COORDINATES*******
C
6 CRR=SIA*CF I *XR+STA*SFI *YR+CTA*ZR

CRI=STA*CF I*X I +STASF I*Y I +CTA*Z I
CFR=CFI*YR-SF I*XR
CFI=CF I*YI-SFI*XI
CTR=CTA*CFI*YR+CTA*SFI*YR-SlA*ZR
CTI=CTA*CFI*XI+CTA*SFI*YI-STA*ZI
FV(NFP,i)=FV(NFP,1)+CRR
FV(NFP,2)=FV(NFP,2)+CRI
FV(NFP,3)=FV(NFP,3)+CTR
FV(NFP,4)=FV(NFP,4)+CTI
FV(NFP,5)=FV(NFP,5)+CFR
FV(NFP,h)=FV(NFP,6)+CFI
IF(FV(NFP,3).EO.0.0 .OR. FV(NFP,4).EO. 0.0) GO TO 27
PHASE=ATAN2(FV(NFP,3),FV(NFP,4))/DR
GO TO 28

27 PHASE=O.O
28 POWER =FV(NFP,3)* **2FV(NFP, * VNP,5)*2+FV(NFP,6)**2

IF(IR1.NE.LIR) GI) TO 55
PWR(NFP) =FV(NFP,3)*2+FV(NFP,4)**2+FV(NP,5)**2+FV(FP,FVNFP)**2

C
C ***~***'*DETAILS OF DATA NOT REOUJIRED********

C
55 IF(L3.EO.1) GO TO 901
C
C ******:,*WRITE COMPONENTS OF ELECTRIC FIELD********
C

WRITE(6,5655)NFP,CBSTD(ITI),CBSFOI(IFI),IR,FV(NFP,1),FV(NFP,2),
lFV(NFP,3) ,FV(NFP,4) ,FV(NFP,5) ,FV(NFP,6),POWER ,PHASE

5655 FORMAl(3X,I3,5X,F7.2,1X,F7.2,3X,I3,3X,R(FlO.2,1X))
901 CONTINUE
C
C ********START WITH A NEW SEGMENT********
C

GO TO 16
C
C *****X**ALL SEGMENTS AND FIELD POINTS DONE********
C
C ********FIND THE DIRECTION OF MAXIUM RADIATED POWER********
C
300 D1) 500 I=I,NFP

IF(PWR(I).GT.MIG) GO TO 501
GI) TO 500

501 IBIG=I
BIG=PWR( I)

(81)



500' CONTINUE

DO 502 I=1,NFP
IF(PWR(I).EO.O.O) PWR(I)-=0.000000001
PWR(I)=10.*ALOG10(PWR(I)/BIG)

502 CONTINUE

IFI=NUMF(IBIG)
ITI=NUMiI(IBIG)

C
C ******** END OF COMPUTATION********
C
C ,**:.***WRITE HEADING FOR DB TABLE*"******
C

IS=1
IE=8
NTAB=(NFP-1)/8+1
WRITE (6,1006)
WRITE(6,1010)CBSTD(ITI),CBSFD(IFI)

1010 FORMAT(//3X,46HMAXIMUM POWER IS RADIATED IN DIRECTION TETA = ,F8.3
1,5H,FI= ,F8.3)
WRITE(6,1008)DIA,FLDA,FRC
WRITE(6,1021)F,A,B,G,EX,EY,EZ
WRITE(6,1031)D1,D2,D3
WRITE(6,3333)

3333 FORMAT(//3X,118HIN THE FOLLOWING TABLE EACH ROW GIVES THE POWER IN
1 DB. THE ZERO DB REFERENCE IS THE POWER RADIATED IN THE DIRECTIO
2N )
WRITE(6,3334)CRSTD(ITI),CBSFD(IFI),BIG

3334 FORMAT(/3X,7HTETA = ,F8.3,10H AND FI = ,F8.3,25H AND HAS ABSOLUTE
1 VALUE ,F12.3)
DO 208 I=1,NTAB
N2=IS+1
N3=N2+1
N\4=N3+1
N5=N4+1
N6=N5+ 1
N7=N6+1
WRITE(6,6666) IS,N2,N3,N4,N5,N6,N7,IE

6666 FORMAT(//3X,18HFIELD POINT ,2X,8(13,9X))
I T1=NUMT( IS)
IT2=NUMT(N2)
IT3=NUMI(N3)
IT4=NUMT(N4)
IT5=NUMT(N5)
116=NUMT(N6h)
IT7=NUJMT(N7)
118=NUMT(IE)
IFL=NUMF (IS)
IF2=NUMF(N2)
IF3=NUIMF(N3)
IF4=NUMF(N4)
IF5=NUMF(N5)
IF6=NCJMF (N)
IF7=NUMF(N7)
IF8=NUMF(IE)
WRITE(6,9222)CRSTD(IT1),CBSTD(IT2),CBSTD(IT3),CBSTD(IT4),CBSTD(IT5
1),CBSTD(IT6),CBSTD(IT7),CBSTD(I'8)

9222 FOJRMAT(3X,12HTETA DE(;REES,6hX,8F12.6)
,RIlE(6,9333)CBSFO(IFl),CBSFD(IF2),CBSFF2 BSF(IF3)CBSFD(IF4)CBSFDIF5
1),CBSFD(IF6),CBSFD(IF7),CBSFD(IFR)

9333 FORMAT( 3X,lOHFI DEGREES,8X,8F12.h)

(82)



WRITE(6,1003)
WRITE(h6,1003)

9672 WRITE(6,1001)(PWR(J),J=IS,IE)
1001 FORMAT(3X,11HD LEVEL ,4X,3X,8F12.6)
9673 IS=IS+8

IE=IE+8
208 CONTINUE

WRITE(15,8000)
8000 FORMAT(5X,3HPHI,IOX,5HTHETAlOX,2HDB)

WRITE(15,8002) NFP
8002 FORMAT(3X,13)

I)O 8050 I=I,NFP
KT=NUMT(I)
KF=N(MF(I)

8050 WRITE(15,8001) CBSFD(KF),CBSTD(KT),PWR(I)
8001 FORMAT(4X,F12.6,3X,F12.6,3X,F12.6)

GO TO 29
8060 WRITE(15,8061)
8061 FORMAT(5X,3HEND)

RETURN
701 WRITE(6,7111)
7111 FORMAT(//3X,35HTHE RING DIMENSION IS INSUFFICIENT.)

RETURN
END
SURROUTINE SETUP
COMMON AAXI,AXR,AYI,AYR,AZI,AZR,A1,A2,A3,A4,A5,A6,A7, B,AR,BR
COMMON CACBCELNUlM,CFI,CFRtCG,CKD,CKRCRI,CRRCTAtCTICELAST
COMMON COSTA,CPHI,SINTA,SPHI
COMMON l)l,D2,t3,DIA,DPHI,DR,DRHO,DRR,DRl,DTR,DTI,DFR,DFI
COMMON Ell,E12,E13,E21,E2E2E23,E31,E32,E33,EX,EY,EZ
COMMON F,F1,FLDA,FNUM,FRING,FR,FRC,FZ,GR,G,BIG
COMMON H,HX,HY,HZ,HXF,HYF,HZF
COMMON IS,IE,IT1,IT2,IT2,3,T4,T5,IT6,IT7,1T8,IF1,IF2,1F3,1F4, F5

COMMON IF6,IF7,IF8,N2,N3,N4,N5,N,N7, IRM,L5,L6,L7,LS,L9,LIO
COMMON 1,1I,,I,IDSUM,IEND,IENDOI,IFI,IN,IR,IR1,ISIJM,ITI,IRIG
COMMON JJ1,JBI,JBIG,JRING,LIR,LIR1,LSW,L1,L2,L3,L4,M, lST
COMMON NFI,NFP,NPR,NR,NRING,NRING1,NRSG,NSUMDS,NT,NTA,NU,NLLR,NUM
COMMON PX,PY,PZ
COMMON PHI,POWER,O,QD,QFI,OR,PHASE,R1,R2,RP,RHO,RH02
COMMON SA,SB,SFI,SG,SKDSDKR,STA,TA,TPI,VSJ
COMMON X,XI,XIUL,XRXRUL,YI,YIUL,YR,YRUL,Z,ZI,ZIUL,ZRZRUL
COIMMON NRI(400),NSUM(400),NUMSUM(400),NUMT(250),NUMF(250)
COMMON CBSTD(250),CHSFD(250)
C()MMON VX(1000),VY(1000),VZ(1000),VDS(1000),VHXR(1000),VHXI(1000)
COMMON VHYR(1000)tVHYI(1000),VHZR(1000),VHZI(1000),VNXZ(1000)
COMMON VNYZ(1000)

2 'I=I+1
IF(I.EO.(IEND+1)) RETURN
IF(IRl.GE.I1ST) GO TO 17
CELNUM=FLOAT(I-IENDO)
CELNUM=CELNUM-.5

18 PHI=DPHI*CELNUM
CPHI=COS(PHI)
SPHI=SIN(PHI)
X=RHO*CPHI
XEX=X-EX
VX(I)=X
Y=RHO*SPHI
YEY=Y-EY
VY(I)=Y

(83)



IF(LSW.EO.1) GO TO 31
VZ(NRING)=RH02/(F*4.)-F
Z=VZ(NRING)
ZEZ=Z-EZ
R2=RH02+Z**2
R1=R2**.5
ZRL=Z-R1
VDS(NRING)=TPI*((RHO+.5*DRHO)**2-(RHO-.5*DRHO)**2)/(FNUM*2.)
LSW=1

31 VNXZ(I)=X/ZRI
VNYZ(I)=Y/ZR1

C
C ********RP IS THE DISTANCE FROM THE PHASE CENTER TO ELEMENTAL A
C

RP=(XEX**2+YEY**2+ZEZ**2)**.5
CtISTA=(E31*XEX+E32*YEY+E33*ZEZ)/RP

C
C *******FR IS = COS TETA**NU/RP,THE PATTERN FACTOR OF SOURCE**
C

FR=(COSTA**NU) /RP
CR=Q*RP-AL*DR*(1.-COSTA)
CKR=COS(CR)
SKR=SIN(CR)

C
C *****~**HXHY,HZ ARE THE COMPONENTS OF H IN DIRECTION OF H FIEL
C

HX=YEY*PZ-ZEZ*PY
HY=ZEZ*PX-XEX*PZ
HZ=XEX*PY-YEY,'PX
H=(HX**2+HY**2+HZ**2)**.5
HXF=HX*FR/H
HYF=HY*FR/H
HZF=HZ*FR/H

22 VHXR(I)= HXF*CKR
VHXI(I)=-HXF*SKR
VHYR(I)= HYF*CKR
VHYI(I)=-HYF*SKR
VHZR(I)= HZF*CKR
VHZI(I)=-HZF*SKR
GO TO 2

17 CELNUM=CELNUM+1.
IF(CELNUM.GT.CELAST) GO TO 19
GO TO 18

19 CELNUM=CELNUM-1.
RETURN
END
SUBROUTINE ADDUP
COMMON A,AXI,AXR,AYI,AYR,AZIAZR,A1,A2,A3,A4,A5,A6,A7, B,AR,BR
COMMON CA,CB,CELNJM,CFI,CFRCG,CKD,CKR,CRI,CRR,CTA,CTI,CELAST
COMMON COSTA,CPHI,SINTA,SPHI
COMMON Dl,D2,D3,DIADPHIDPHI,DR,RHO,DRR,DRI,DTR,DTI,DFR,DFI
COMMON Ell,E12,E13,E21,E22,E 23,E31,E32,E33,EX,EY,EZ
COMMON F,F1,FLDA,FNUM,FRING,FR,'FRC,FZ,GR,G,BIG
COMMON HHXtHY,HZ,HXF,HYF,HZF
COMMON IS,IE,IT1,IT2,IT3,IT4,IT5,IT6,IT7,TT8, IF1,F2,IF3,IF4,IF5
COMMON IF6,IF7,IF8,N2,N3,N4,N5,N6,N7,IRM,L5,L6,L7,L8,L9,LlO
C(IMMON I,I1,ID,IDSUM,IEND,IENDO,IFI,IN,IR,IR1,ISlUM,ITI,IBIG
COMMON J,Jl,JB1,JBIG,JRING, LIR,LIR,LSW,Ll,L2,L3,L4,M, IST
COMMON NFI,NFP,NPR,NR,NRING,NRING1,NRSG,NSUMDS,NT,NTA,NU,NLLR,NUM
COMMON PX,PY,PZ

(84)



COMMON PHI,POWER,Q,QD,OFI1,R,PHASE,R1,R2,RP,RH0,RH02

COMMON SA,SB,SFI,SG,SKDSDSKRSTA,TA,TPI,VDSJ
COMMON X,XI,XIUL,XR,XR(UL,Y,YI,YIUL,YR,YRUL,Z,ZI,ZIUL,ZR,ZRUL
COMMON NRI(400),NSUM(400),NUMSUM(400),NUMT(250),NUMF(250)
COMMON CRSTD(250),CBSFD(250)
COMMON VX(1000),VY(1000),VZ(1000),VDS(1000),VHXR(1000),VHXI(1000)
COMMON VHYR(1000),VHYI(1000),VHZR(1000),VHZI(1000),VNXZ(1000)
COMMON VNYZ(1000)
1=0
J=NLLR

7 J=J+l
J1=J+1
IF(J.GT.NPR) RETURN
VDSJ=VDS(J)
XRIJL=O.
XI UL=O.
YRUL=O.
YI JL=O
ZRUL=O.
ZI UL=O.

37 I=I+1
IF(I.GT.NUMSUM(J1)) GO TO 38
IF(J.GT.L7.AND.J.LT.L8) GO TO 37
CD=O*(VX(I)*CFI*STA+VY(I)*SFI*STA+VZ(J)*CTA)
CKD=COS(CD)
SKD=SIN(CD)
AXR=VNYZ(I)*VHZR(I)-VHYR(I)
AXI=VNYZ(I)*VHZI(I)-VHYI(I)
XRUL=XRUL+(AXR*CKD-AXI*SKD)
XIUJL=XIUL+(AXR*SKD+AXI*CKD)
AYR=VHXR(I)-VNXZ(I)*VHZR(I)
AYI=VHXI(I)-VNXZ(I)*VHZI(I)
YRUL=YRUL+(AYR*CKD-AYI*SKD)
YIUL=YIUL+(AYR*SKD+AYI*CKD)
AZR=VNXZ(I)*VHYR(I)-VNYZ(I)*VHXR(I)
AZI=VNXZ(I)*VHYI(1)-VNYZ(I)*VHXI(I-)
ZRUL=ZRUL+(AZR*CKD-AZI*SKD)
ZIUL=ZIUJL+(AZR*SKD+AZI*CKD)
GO TO 37

38 XR=XR+XRUL*VDSJ
XI=XI+XIULVOVDSJ
YR=YR+YRUL*VDSJ
YI=YI+YIUL*VDSJ
ZR=ZR+ZRUL*VDSJ
ZI=ZI+ZIUL*VDSJ
I = I-1
GO TO 7
END

//GOU.FT07F001
//GO.FTO6F001
//GO.FT15F001
//GO). F105F001

16
30.00000
0.000 0.
0.000
8.000
0.000

DD SYSOIJT=B,I)CB=(RECFM=F,BLKSIZE=80)
DD SYSOUT=A,DCR=(RECFM=UA,BLKSIZE=133)
DD SYSOUJT=ADCH=(RECFM=UAtBLKSIZE=133)
DO *

1 999 1
0.00000 0.00000 0.00000
000 0.000 0.000 0.000
1.000 2.000 3.000
9.000 10.000 11.000 1;

0
4.731666667
0.000 1.000

4.000 5.000
2.000 13.000

0.42500
0.000

6.000
14.000

36.0000C
0.000
7.000
15.000

(85)


